STUDY OF THE EFFECT OF NOVEL COPROCESSED EXCIPIENTS ON THE FLOW PROPERTIES AND COMPACTIBILITY OF A TABLET BLEND

Main Article Content

Mr. Kevin Panchal
Ms. Nirzari Antani
Dr. Pragnesh Patani

Keywords

Co-processed excipients, flow properties, compactibility, tablet formulation, direct compression, powder handling, lubricant sensitivity, mechanical strength, particle engineering, spray drying, granulation, silicified microcrystalline cellulose, Cellactose, CombiLac, fast-disintegrating tablets, patient-centric dosage forms, tablet hardness, elastic recovery, manufacturing efficiency, regulatory challenges, sustainability, modified-release formulations.

Abstract

The development of reliable tablet formulations relies heavily on the choice of excipients, as these materials influence both the manufacturing process and the final quality of the product [9,10,42]. Conventional single excipients often present limitations, since they may not simultaneously provide desirable flowability, compressibility, and disintegration [2,6,46]. To overcome these challenges, co-processed excipients (CPEs) have emerged as innovative multifunctional materials that integrate the advantages of two or more excipients into a single system [8,23,59]. Recent research demonstrates that novel CPEs such as silicified microcrystalline cellulose (ProSolv® SMCC), Cellactose®, CombiLac®, and mannitol–starch combinations significantly enhance powder flow, packing uniformity, and bonding strength during compression [14,16,17,18,35]. These improvements lead to tablets with superior mechanical strength, reduced elastic recovery, and more consistent quality attributes [15,38]. Furthermore, advances in processing techniques including spray drying, granulation, and particle surface modification have further boosted the functionality of CPEs, making them especially well-suited for direct compression and the development of fast-disintegrating dosage forms [26,31,44,45].Overall, CPEs represent a practical solution to the drawbacks associated with conventional excipients, offering better processability, lower sensitivity to lubricants, and greater formulation flexibility for modern oral solid dosage forms. [25,29,60]

Abstract 0 | Pdf Downloads 0

References

1. Iurian S, Ilie L, Achim M, Tomuță I. The evaluation of dynamic compaction analysis as a qbd tool for paediatric orodispersible minitablet formulation. Farmacia. 2020;68(6):999–1010.
2. Ilić I, Kása P, Dreu R, Pintye-Hódi K, Srčič S. The compressibility and compactibility of different types of lactose. Drug Development and Industrial Pharmacy. 2009;35(10):1271–80.
3. Al-Zoubi N, Odeh F, Nikolakakis I. Co-spray drying of metformin hydrochloride with polymers to improve compaction behavior. Powder Technology [Internet]. 2017 Feb 1 [cited 2025 Jul 23];307:163–74. Available from: https://www.researchgate.net/publication /310815400_Co-spray_drying_of_metformin_hydrochloride_with_polymers_to_improve _compaction_behavior
4. Yu Y, Zhao L, Lin X, Wang Y, Du R, Feng Y. Research on the powder classification and the key parameters affecting tablet qualities for direct compaction based on powder functional properties. Advanced Powder Technology [Internet]. 2021 Feb 1 [cited 2025 Jul 23];32(2):565–81. Available from: https://www.sciencedirect.com/science/article /abs/pii/S0921883121000042
5. Adolfsson Å, Olsson H, Nyström C. Effect of particle size and compaction load on interparticulate bonding structure for some pharmaceutical materials studied by compaction and strength characterisation in butanol. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 1997 Nov 1 [cited 2025 Jul 23];44(3):243–51. Available from: https://www.science direct.com/science/article/abs/pii/S0939641197001367
6. Syukri Y, Romdhonah R, Fazzri AN, Sholehuddin RF, Kusuma AP. FORMULATION OF CHLORPHENIRAMINE MALEATE TABLETS USING CO-PROCESSED EXCIPIENT AS A FILLER AND BINDER. Journal of Pharmaceutical Sciences and Community. 2019 May 31;16(1):29–35.
7. Gohel MC, Patel TM, Parikh RK, Parejiya PB, Barot BS, Ramkishan A. Exploration of novel co-processed multifunctional diluent for the development of tablet dosage form. Indian Journal of Pharmaceutical Sciences [Internet]. 2012 Sep [cited 2025 Jul 23];74(5):381–6. Available from: https://www.researchgate.net/publication/236958957_Exploration_of_Novel_Co-processed_Multifunctional_Diluent_for_the_Development_of_Tablet_Dosage_Form
8. Chaerunisaa AY, Sriwidodo S, Abdassah M, Chaerunisaa AY, Sriwidodo S, Abdassah M. Microcrystalline Cellulose as Pharmaceutical Excipient. Pharmaceutical Formulation Design - Recent Practices [Internet]. 2019 Jul 19 [cited 2025 Jul 23]; Available from: https://www.intechopen.com/chapters/68199
9. Jivraj M, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science and Technology Today [Internet]. 2000 Feb 1 [cited 2025 Jul 23];3(2):58–63. Available from: https://www.researchgate.net/publication /222000718_An_overview_of_the_different_excipients_useful_for_the_direct_compression_of_tablets
10. Badawy SIF, Shah KR, Surapaneni MS, Szemraj MM, Hussain M. Effect of spray-dried mannitol on the performance of microcrystalline cellulose-based wet granulated tablet formulation. Pharmaceutical Development and Technology. 2010;15(4):339–45.
11. Setty C, Prasad DVK, Gupta VRM, Sa B. Development of fast dispersible aceclofenac tablets: Effect of functionality of superdisintegrants. Indian Journal of Pharmaceutical Sciences [Internet]. 2008 Feb 1 [cited 2025 Jul 23];70(2):180–5. Available from: https://www.researchgate.net /publication/324795476_Flow_compaction_and_tabletting_properties_of_co-processed_excipients _using_pregelatinized_ofada_rice_starch_and_HPMC
12. Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydrate Polymers [Internet]. 2022 Feb 15 [cited 2025 Jul 23];278:118968. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0144861721013552
13. Rojas J, Kumar V. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. International Journal of Pharmaceutics [Internet]. 2011 Sep 15 [cited 2025 Jul 23];416(1):120–8. Available from: https://www.sciencedirect.com/science/article/abs /pii/S0378517311005515
14. Woyna-Orlewicz K, Brniak W, Tatara W, Strzebońska M, Haznar-Garbacz D, Szafraniec-Szczęsny J, et al. Investigating the Impact of Co-processed Excipients on the Formulation of Bromhexine Hydrochloride Orally Disintegrating Tablets (ODTs). Pharmaceutical Research [Internet]. 2023 Dec 1 [cited 2025 Jul 23];40(12):2947. Available from: https://pmc.ncbi.nlm.nih. gov/articles/PMC10746752/
15. Arida AI, Al-Tabakha MM. Cellactose® a co-processed excipient: A comparison study. Pharmaceutical Development and Technology [Internet]. 2008 Mar [cited 2025 Jul 23];13(2):165–75. Available from: https://www.researchgate.net/publication/5472568_CellactoseR_a_Co-processed_ Excipient_A_Comparison_Study
16. Dominik M, Vraníková B, Svačinová P, Elbl J, Pavloková S, Blahová Prudilová B, et al. pharmaceutics Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose ® 80, CombiLac ® , MicroceLac ® 100, and StarLac ®. 2021 [cited 2025 Jul 23]; Available from: https://doi.org/10.3390/pharmaceutics13091486
17. Pharma GmbH J. PROSOLV SMCC ® Silicified Microcrystalline Cellulose.
18. The Influence of Matrix Plasticity on Lubricant Effects. [cited 2025 Jul 23]; Available from: www.jrspharma.com
19. The Influence of Matrix Plasticity on Lubricant Effects. [cited 2025 Jul 23]; Available from: www.jrspharma.com
20. Arida AI, Al-Tabakha MM. Cellactose® a co-processed excipient: A comparison study. Pharmaceutical Development and Technology [Internet]. 2008 Mar [cited 2025 Jul 23];13(2):165–75. Available from: https://pubmed.ncbi.nlm.nih.gov/18379907/
21. van Veen B, Bolhuis GK, Wu YS, Zuurman K, Frijlink HW. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2005 Jan 1 [cited 2025 Jul 23];59(1):133–8. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0939 641104001614?utm_source=chatgpt.com
22. Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Development and Industrial Pharmacy. 2012 Oct;38(10):1159–70.
23. Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Development and Industrial Pharmacy [Internet]. 2012 Oct [cited 2025 Jul 23];38(10):1159–70. Available from: https://pubmed.ncbi.nlm.nih.gov/22966909/
24. Aleksić I, Glišić T, Ćirin-Varađan S, Djuris M, Djuris J, Parojčić J. Evaluation of the Potential of Novel Co-Processed Excipients to Enable Direct Compression and Modified Release of Ibuprofen. Pharmaceutics [Internet]. 2024 Nov 1 [cited 2025 Jul 23];16(11):1473. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11597293/
25. Horison R, Surini S. ADVANCES OF CO-PROCESSED EXCIPIENTS: APPLICABILITY AND FUNCTIONAL CHARACTERISTIC IMPROVEMENTS. FARMACIA [Internet]. 2024 [cited 2025 Jul 23];72:5. Available from: https://doi.org/10.31925/farmacia.2024.5.2
26. Hauschild K, Picker-Freyer KM. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation. AAPS PharmSci [Internet]. 2015 May 26 [cited 2025 Jul 23];6(2):27. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2751008/
27. Badwan AA, Rashid I, al Omari MMH, Darras FH. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications. Marine Drugs [Internet]. 2015 Mar 1 [cited 2025 Jul 23];13(3):1519. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4377997/
28. Shah DS, Moravkar KK, Jha DK, Lonkar V, Amin PD, Chalikwar SS. A concise summary of powder processing methodologies for flow enhancement. Heliyon [Internet]. 2023 Jun 1 [cited 2025 Jul 23];9(6):e16498. Available from: https://pmc.ncbi.nlm.nih.gov/articles /PMC10245010/
29. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. International Journal of Pharmaceutics [Internet]. 2014 Oct 1 [cited 2025 Jul 23];473(1–2):64–72. Available from: https://www.sciencedirect.com/science/article/pii/S0378517314004840
30. Chen FC, Liu WJ, Zhu WF, Yang LY, Zhang JW, Feng Y, et al. Surface Modifiers on Composite Particles for Direct Compaction. Pharmaceutics [Internet]. 2022 Oct 1 [cited 2025 Jul 23];14(10):2217. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9612340/
31. A Hedaya M, Aldeeb D. The Need for Tamper-Resistant and Abuse-Deterrent Formulations. Journal of Pharmaceutical Care & Health Systems. 2014;1(1).
32. Mohammad HT, Omar TA. Abuse Deterrent Dosage Forms: Approaches, Advantages and Limitations. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ) [Internet]. 2024 Oct 1 [cited 2025 Jul 23];7(2):1–7. Available from: https://ajms.iq/index.php/ALRAFIDAIN/a rticle/view/1277
33. Schmidt PC, Rubensdörfer CJW. Evaluation of ludipress as a “multipurpose excipient” for direct compression: Part i: Powder characteristics and tableting properties. Drug Development and Industrial Pharmacy [Internet]. 1994 [cited 2025 Jul 23];20(18):2899–925. Available from: https://www.researchgate.net/publication/232037185_Evaluation_of_Ludipress_as_a_Multipurpose_Excipeent_for_Direct_Compression_Part_I_Powder_Characteristics_and_Tableting_Properties
34. PEARLITOL Flash Co-processed Mannitol Starch [Internet]. [cited 2025 Jul 23]. Available from: https://www.roquette.com/innovation-hub/pharma/product-profile-pages/pearlitol-flash-co-processed-mannitol-starch
35. Kuck J, Breitkreutz J. Impact of lubrication on key properties of orodispersible minitablets in comparison to conventionally sized orodispersible tablets. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2022 Nov 1 [cited 2025 Jul 23];180:71–80. Available from: https://www.researchgate.net/publication/363286798_Impact_of_Lubrication_on_Key_Properties_of_Orodispersible_Minitablets_in_Comparison_to_Conventionally_Sized_Orodispersible_Tablets
36. Hejduk A, Czajka S, Lulek J. Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. Powder Technology [Internet]. 2021 Jul 1 [cited 2025 Jul 23];387:494–508. Available from: https://www.sciencedirect.com/ science/article/pii/S0032591021002631
37. Kokott M, Lura A, Breitkreutz J, Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2021 Nov 1 [cited 2025 Jul 23];168:122–30. Available from: https://www.researchgate.net/publication/354232763_Evaluation_of_two _novel_co-processed_excipients_for_direct_compression_of_orodispersible_tablets_and_mini-tablets
38. Tranová T, Macho O, Loskot J, Mužíková J. Study of rheological and tableting properties of lubricated mixtures of co-processed dry binders for orally disintegrating tablets. European Journal of Pharmaceutical Sciences. 2022 Jan 1;168.
39. Lura V, Lura A, Breitkreutz J, Klingmann V. The revival of the mini-tablets: Recent advancements, classifications and expectations for the future. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2025 May 1 [cited 2025 Jul 23];210:114655. Available from: https://www.sciencedirect.com/science/article/pii/S0939641125000311
40. Saigal N, Baboota S, Ahuja A, Ali J. Fast-dissolving intra-oral drug delivery systems. Expert Opinion on Therapeutic Patents [Internet]. 2008 Jul [cited 2025 Jul 23];18(7):769–81. Available from: https://www.researchgate.net/publication/232069101_Fast-dissolving_intra-oral_drug_ delivery_systems
41. Salústio PJ, Inácio C, Nunes T, Sousa e Silva JP, Costa PC. Flow characterization of a pharmaceutical excipient using the shear cell method. Pharmaceutical Development and Technology. 2020 Feb 7;25(2):237–44.
42. Desai PM, Chan LW, Heng PWS. Drug Substance and Excipient Characterization. Handbook of Pharmaceutical Granulation Technology. 2021 Apr 1;69–102.
43. Jain S, Kaur S, Rathi R, Nagaich U, Singh I. Application of co-processed excipients for developing fast disintegrating tablets: A review. Polymers in Medicine. 2023 Mar 16;53(1):59–68.Parkash V, Maan S, Deepika, Yadav S, Hemlata H, Jogpal V. Fast disintegrating tablets: Opportunity in drug delivery system. Journal of Advanced Pharmaceutical Technology & Research [Internet]. 2011 [cited 2025 Jul 23];2(4):223. Available from: https://pmc.ncbi.nlm.nih.gov/ articles/PMC3255350/
44. Ilić I, Kása P, Dreu R, Pintye-Hódi K, Srčič S. The compressibility and compactibility of different types of lactose. Drug Development and Industrial Pharmacy. 2009;35(10):1271–80.
45. PROSOLV® ODT G2 - Pharma Excipients [Internet]. [cited 2025 Jul 23]. Available from: https://www.pharmaexcipients.com/product/prosolv-odt-g2/
46. Hejduk A, Czajka S, Lulek J. Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. Powder Technology [Internet]. 2021 Jul 1 [cited 2025 Jul 23];387:494–508. Available from: https://www.sciencedirect.com/science /article/pii/S0032591021002631
47. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs) - A novel solid oral dosage form for paediatric use. European Journal of Pharmaceutics and Biopharmaceutics. 2011 Aug;78(3):462–9.
48. Schulze D. Flow Properties of Powders and Bulk Solids. [cited 2025 Jul 23]; Available from: https://www.springer.com/us/book/9783030767198
49. Iurian S, Ilie L, Achim M, Tomuță I. THE EVALUATION OF DYNAMIC COMPACTION ANALYSIS AS A QBD TOOL FOR PAEDIATRIC ORODISPERSIBLE MINITABLET FORMULATION. FARMACIA [Internet]. 2020 [cited 2025 Jul 23];68:6. Available from: https://doi.org/10.31925/farmacia.2020.6.6
50. W. Heckel, “Density-Pressure Relationship in Powder Compaction,” Transactions of the Metallurgical Society of AIME, Vol. 221, 1961, pp. 671-675. - References - Scientific Research Publishing [Internet]. [cited 2025 Jul 23]. Available from: https://www.scirp.org/reference/ referencespapers?referenceid=936921
51. Adams MJ, McKeown R. Micromechanical analyses of the pressure-volume relationship for powders under confined uniaxial compression. Powder Technology [Internet]. 1996 Aug 1 [cited 2025 Jul 23];88(2):155–63. Available from: https://www.sciencedirect.com/science/ article/abs/pii/0032591096031178
52. Leuenberger H. The application of percolation theory in powder technology. Advanced Powder Technology [Internet]. 1999 Jan 1 [cited 2025 Jul 23];10(4):323–52. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0921883108604215
53. Nielsen LF. Strength and Stiffness of Porous Materials. Journal of the American Ceramic Society [Internet]. 1990 Sep 1 [cited 2025 Jul 23];73(9):2684–9. Available from: /doi/pdf/10.1111/j.1151-2916.1990.tb06746.x
54. Keizer HL, Kleinebudde P. Elastic recovery in roll compaction simulation. 2019 [cited 2025 Jul 23]; Available from: https://doi.org/10.1016/j.ijpharm.2019.118810
55. Fell JT, Newton JM. The prediction of the tensile strength of tablets. Journal of Pharmacy and Pharmacology [Internet]. 1970 [cited 2025 Jul 23];22(3):247–8. Available from: https://pubmed.ncbi.nlm.nih.gov/4399504/
56. Hiestand EN. Mechanical Properties of Compacts and Particles that Control Tableting Success. Journal of Pharmaceutical Sciences [Internet]. 1997 Sep 1 [cited 2025 Jul 23];86(9):985–90. Available from: https://www.sciencedirect.com/science/article/abs/pii/S002235491550378X
57. Bowles BJ, Dziemidowicz K, Lopez FL, Orlu M, Tuleu C, Edwards AJ, et al. Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability.
58. Bhatia V, Dhingra A, Chopra B, Guarve K. Co-processed excipients: Recent advances and future perspective. Journal of Drug Delivery Science and Technology [Internet]. 2022 May 1 [cited 2025 Jul 23];71:103316. Available from: https://www.sciencedirect.com/science/article/abs /pii/S177322472200226X?utm_source=chatgpt.com
59. Burande AS, Dhakare SP, Dondulkar AO, Gatkine TM, Bhagchandani DO, Sonule MS, et al. A review on the role of co-processed excipients in tablet formulations. Hybrid Advances [Internet]. 2024 Dec 1 [cited 2025 Jul 23];7:100299. Available from: https://www.sciencedirect.com /science/article/pii/S2773207X2400160X?utm_source=chatgpt.com
60. Hejduk A, Czajka S, Lulek J. Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. Powder Technology [Internet]. 2021 Jul 1 [cited 2025 Jul 23];387:494–508. Available from: https://www.sciencedirect.com/science /article/pii/S0032591021002631?utm_source=chatgpt.com
61. Aleksić I, Glišić T, Ćirin-Varađan S, Djuris M, Djuris J, Parojčić J. Evaluation of the Potential of Novel Co-Processed Excipients to Enable Direct Compression and Modified Release of Ibuprofen. Pharmaceutics [Internet]. 2024 Nov 1 [cited 2025 Jul 23];16(11):1473. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11597293/
62. Inactive Ingredients in Approved Drug Products Search: Frequently Asked Questions | FDA [Internet]. [cited 2025 Jul 23]. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/inactive-ingredients-approved-drug-products-search-frequently-asked-questions
63. Shi T, Lv Y, Huang W, Fang Z, Qi J, Chen Z, et al. Enhanced transdermal delivery of curcumin nanosuspensions: A mechanistic study based on co-localization of particle and drug signals. International Journal of Pharmaceutics [Internet]. 2020 Oct 15 [cited 2025 Jul 23];588:119737. Available from: https://www.sciencedirect.com/science/article/abs/pii/S03 78517320307213?via%3Dihub
64. Handbook of Pharmaceutical Excipients – 7th Edition. Pharmaceutical Development and Technology [Internet]. 2013 Apr [cited 2025 Jul 23];18(2):544–544. Available from: https://www.tandfonline.com/doi/abs/10.3109/10837450.2012.751408
65. Parikh DM. Handbook of Pharmaceutical Granulation Technology, Second Edition. 2005.
66. Bolhuis GK, Armstrong NA. Excipients for direct compaction - An update. Pharmaceutical Development and Technology [Internet]. 2006 Feb [cited 2025 Jul 24];11(1):111–24. Available from: https://pubmed.ncbi.nlm.nih.gov/16544915/
67. Morin G, Briens L. The Effect of Lubricants on Powder Flowability for Pharmaceutical Application. AAPS PharmSciTech [Internet]. 2013 Sep [cited 2025 Jul 24];14(3):1158. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3755167/.
68. Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Critical Reviews in Therapeutic Drug Carrier Systems [Internet]. 2006 [cited 2025 Jul 24];23(1):1–65. Available from: https://pubmed.ncbi.nlm.nih.gov/16749898/
69. Sonnergaard JM. Quantification of the compactibility of pharmaceutical powders. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2006 Jul [cited 2025 Jul 24];63(3):270–7. Available from: https://pubmed.ncbi.nlm.nih.gov/16682176/
70. Burcham CL, Florence AJ, Johnson MD. Continuous manufacturing in pharmaceutical process development and manufacturing. Annual Review of Chemical and Biomolecular Engineering [Internet]. 2018 [cited 2025 Jul 24];9:253–81. Available from: https://pubmed.ncbi.nlm.nih.gov/ 29879381/
71. Builders PF, Arhewoh MI. Pharmaceutical applications of native starch in conventional drug delivery. Starch/Staerke [Internet]. 2016 Sep 1 [cited 2025 Jul 24];68(9–10):864–73. Available from: /doi/pdf/10.1002/star.201500337

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 > >>