ROLE OF CHOLESTEROL CONTENT IN ENHANCING THE STABILITY OF LIPOSOMAL DRUG CARRIERS

Main Article Content

Arpana Maurya
Anjali Bharadwaj
Mukesh Bansal
Birender Singh
Sachin Sharma

Keywords

: Liposomal stability, Cholesterol, Drug delivery systems, Encapsulation efficiency, Lipid bilayer rigidity

Abstract

Abstract
Liposomal drug carriers have emerged as a promising tool in targeted drug delivery, offering enhanced bioavailability and controlled release. However, their stability under physiological and storage conditions remains a critical challenge. Cholesterol, a key component in liposomal formulations, plays a pivotal role in stabilizing the lipid bilayer by modulating membrane rigidity and fluidity. This study investigates the effect of varying cholesterol content on the stability of liposomal formulations, focusing on parameters such as particle size, zeta potential, encapsulation efficiency, and leakage under stress conditions. Liposomes were prepared with different cholesterol-to-lipid molar ratios and characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and high-performance liquid chromatography (HPLC). Stability was assessed under oxidative stress, freeze-thaw cycles, and different storage temperatures. The results demonstrate that an optimal cholesterol content significantly enhances liposomal stability by reducing leakage and preserving structural integrity, with a notable improvement in encapsulation efficiency and resistance to stress conditions. These findings highlight the critical role of cholesterol in designing robust liposomal drug carriers and provide valuable insights for their application in pharmaceutical formulations.

Abstract 115 | PDF Downloads 38

References

1. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48.
2. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102.
3. Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes for targeted drug delivery. Advanced Drug Delivery Reviews, 58(2), 129–147.
4. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160.
5. Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154(2), 123–140.
6. Gregoriadis, G. (1995). Engineering liposomes for drug delivery: Progress and problems. Trends in Biotechnology, 13(12), 527–537.
7. Bangham, A. D. (1963). A review of the properties of phospholipid bilayers and liposomes. Biochemical Society Transactions, 1, 5–8.
8. Woodle, M. C., & Papahadjopoulos, D. (1989). Liposome preparation and characterization. Methods in Enzymology, 171, 193–217.
9. Immordino, M. L., Brusa, P., Rocco, F., & Cattel, L. (2002). Influence of cholesterol content on the stability of liposomes. European Journal of Pharmaceutical Sciences, 15(2), 95–102.
10. Kanika, P., & Kumar, S. (2020). Cholesterol in liposomes: A critical review. Journal of Drug Delivery Science and Technology, 56, 101570.
11. Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular and Molecular Life Sciences, 62(15), 1633–1646.
12. Liu, X., Zhang, Y., Wang, Y., & Zhu, W. (2019). Stability studies of liposomes: Impact of cholesterol ratio. Colloids and Surfaces B: Biointerfaces, 174, 116–124.
13. Mayer, L. D., & Hope, M. J. (1987). Cholesterol modulates liposomal membrane properties. Biochimica et Biophysica Acta, 897(1), 31–41.
14. Avanti Polar Lipids, Inc. (2015). The role of cholesterol in liposomal formulations. Liposome Handbook, 3(2), 45–55.
15. Torchilin, V. P. (2007). Multifunctional nanocarriers. Nature Reviews Drug Discovery, 6(12), 945–960.
16. Ghosh, A. K., & Biswas, S. (2015). Stability enhancement of liposomal formulations using cholesterol. Pharmaceutical Research, 32(8), 2355–2366.
17. Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., & Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents. Journal of Pharmacological Reviews, 51(4), 691–743.
18. New, R. R. (1990). Liposomes: A practical approach. Oxford University Press.
19. Colletier, J. P., Chaize, B., Winterhalter, M., & Fournier, D. (2002). Liposome stability and the role of cholesterol. Biochimica et Biophysica Acta, 1560(1–2), 15–26.
20. Yang, S. C., Jen, W. Y., Chen, Y. C., & Fang, J. Y. (2007). Effects of liposomal size and cholesterol on the stability of liposomes. International Journal of Pharmaceutics, 338(1–2), 237–245.
21. Cullis, P. R., & Hope, M. J. (1985). Cholesterol and liposomal bilayers. Biophysical Journal, 47(1), 41–53.
22. Rigaud, J. L., & Lévy, D. (2003). Reconstitution of membrane proteins into liposomes. Methods in Enzymology, 372, 65–86.
23. Senior, J., & Gregoriadis, G. (1982). Stability of liposomes in serum. Biochemical Society Transactions, 10(2), 146–148.
24. Leroux, J. C. (2005). Injectable nanocarriers: Liposomes and micelles. Advanced Drug Delivery Reviews, 58(15), 1621–1646.
25. Juliano, R. L., & Bauman, J. L. (1988). The influence of cholesterol on drug delivery via liposomes. Pharmaceutical Research, 5(8), 497–508.
26. Phillips, M. C. (1994). Lipoproteins and cholesterol: Cellular transport and regulation. Annual Review of Physiology, 56(1), 679–689.
27. Kapoor, M., & Sachdeva, P. (2016). Advances in liposomal drug delivery systems. Current Pharmaceutical Biotechnology, 17(4), 318–330.
28. Kamps, J. A., & Scherphof, G. L. (2009). Liposome technology for drug delivery. Current Drug Delivery, 6(1), 1–6.
29. Derycke, A. S. L., & De Witte, P. A. (2002). Liposomes for photodynamic therapy. Advances in Drug Delivery Reviews, 56(1), 17–30.
30. Allen, T. M. (2002). Liposomal drug formulations: Rationale for development and clinical application. Trends in Pharmacological Sciences, 23(10), 416–420.