SERUM POTASSIUM VARIABILITY PREDICTS SHORT-TERM ARRHYTHMIA RISK IN HEART FAILURE PATIENTS: A POST-DISCHARGE OBSERVATIONAL COHORT STUDY

Main Article Content

Novfa Iftikhar
Syed Saqib balkhi
Imran Ali Reshi

Keywords

Serum potassium variability; Heart failure; Arrhythmia readmissions; Hypomagnesemia; Beta-blockers; Risk stratification

Abstract

Objective: To investigate whether serum potassium (K⁺) variability during hospitalization for acute decompensated heart failure (ADHF) predicts 30-day arrhythmia readmissions, independent of absolute K⁺ levels, and to identify high-risk subgroups.


Methods: This retrospective observational cohort study analyzed 300 patients. Serum K⁺ variability was quantified as the standard deviation (SD) of serial measurements. The primary outcome was 30-day readmission for ECG-confirmed arrhythmia (atrial fibrillation, ventricular tachycardia, or sustained supraventricular tachycardia). Multivariable logistic regression adjusted for age, ejection fraction, renal function, diuretic dose, magnesium levels, and beta-blocker use.


Results: Among 300 patients (mean age 68 ± 10 years, 45% HFrEF), 60 (20%) were readmitted for arrhythmias. The arrhythmia group exhibited significantly higher K⁺ variability (SD 0.45 ± 0.15 vs. 0.25 ± 0.10 mmol/L, p <0.001), with each 0.1 mmol/L SD increase associated with 40% higher adjusted odds of arrhythmia (aOR=1.4, 95% CI:1.2–1.7, p=0.001). Subgroup analyses revealed stronger associations in HFrEF (aOR=2.2, p=0.01) and hypomagnesemic patients (aOR=2.5, p=0.008). Beta-blocker use attenuated risk (aOR=0.5, p=0.02), while high-dose diuretics amplified it (aOR=2.5, p<0.001). Ventricular tachycardia occurred earlier post-discharge (median 10 vs. 14 days for atrial fibrillation).


Conclusion: Serum K⁺ variability during ADHF hospitalization is an independent predictor of short-term arrhythmia risk, particularly in patients with HFrEF or hypomagnesemia. These findings advocate for protocolized K⁺ stabilization, magnesium repletion, and beta-blocker optimization to reduce arrhythmia-related morbidity, especially in resource-limited settings.

Abstract 31 | pdf Downloads 8

References

1. Aldahl, M., et al. (2017). Association of serum potassium levels with mortality in patients with myocardial infarction. American Journal of Medicine, 130(8), 947–959. https://doi.org/10.1016/j.amjmed.2017.02.043
2. Ambrosy, A. P., et al. (2014). The global health and economic burden of hospitalizations for heart failure. Journal of the American College of Cardiology, 63(12), 1123-1133. https://doi.org/10.1016/j.jacc.2013.11.053
3. Ellison, D. H., & Felker, G. M. (2017). Diuretic treatment in heart failure. New England Journal of Medicine, 377(20), 1964-1975. https://doi.org/10.1056/NEJMra1703100
4. Ezekowitz, J. A., et al. (2017). Declining in-hospital mortality and increasing heart failure incidence in Medicare patients from 1994 to 2013. JACC: Heart Failure, 5(5), 290–300. https://doi.org/10.1016/j.jchf.2016.12.006
5. Groenewegen, A., et al. (2020). Epidemiology of heart failure. European Journal of Heart Failure, 22(8), 1342-1356. https://doi.org/10.1002/ejhf.1858
6. Grodzinsky, A., et al. (2020). Electrolyte monitoring and management in heart failure: A review. Journal of Cardiac Failure, 26(4), 315–325. https://doi.org/10.1016/j.cardfail.2019.11.017
7. Hansen, B. A., et al. (2022). Magnesium deficiency in heart failure: Mechanisms and therapeutic implications. European Heart Journal, 43(14), 1420–1432. https://doi.org/10.1093/eurheartj/ehab876
8. Heidenreich, P. A., et al. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure. Journal of the American College of Cardiology, 79(17), e263–e421. https://doi.org/10.1016/j.jacc.2022.01.012
9. Komajda, M., et al. (2017). Physicians’ adherence to guideline-recommended medications in heart failure with reduced ejection fraction: Data from the QUALIFY global survey. European Journal of Heart Failure, 19(9), 1114–1123. https://doi.org/10.1002/ejhf.830
10. McDonagh, T. A., et al. (2021). 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(36), 3599-3726. https://doi.org/10.1093/eurheartj/ehab368
11. Nattel, S., et al. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425-456. https://doi.org/10.1152/physrev.00014.2006
12. Pitt, B., et al. (2014). Spironolactone for heart failure with preserved ejection fraction. New England Journal of Medicine, 370(15), 1383-1392. https://doi.org/10.1056/NEJMoa1313731
13. Ponikowski, P., et al. (2016). 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 37(27), 2129-2200. https://doi.org/10.1093/eurheartj/ehw128
14. Viering, D. H. H. M., et al. (2021). Hypomagnesemia as a driver of diuretic resistance and a risk factor for arrhythmias in heart failure. European Journal of Heart Failure, 23(7), 1079–1087. https://doi.org/10.1002/ejhf.2206
15. Weiss, J. N., et al. (2017). The arrhythmia of potassium: A mechanistic guide to hyperkalemia and hypokalemia. Circulation Research, 121(3), 195-197. https://doi.org/ 10.1161/ CIRCRESAHA.117.311446
16. Zipes, D. P., et al. (2006). ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation, 114(10), e385-e484. https://doi.org/10.1161/CIRCULATIONAHA.106.178233