HEART RATE VARIABILITY PATTERNS IN PATIENTS WITH COMMON CHRONIC DISEASES: A COMPREHENSIVE ANALYSIS

Main Article Content

Dr. Kirti Gupta

Keywords

Heart rate variability, Autonomic dysfunction, Chronic diseases, Diabetes mellitus, Cardiovascular risk

Abstract

Introduction: Heart rate variability (HRV) reflects autonomic nervous system function and may provide insights into cardiovascular health in chronic diseases. This study aimed to characterize and compare HRV patterns across common chronic conditions and identify disease-specific autonomic signatures.


Methods: This cross-sectional analytical study was conducted at Department of Physiology, Vyas Medical College & Hospital, Jodhpur, India over 6 months. We recruited 400 participants (80 each with hypertension, diabetes mellitus, COPD, coronary artery disease, and healthy controls) using stratified random sampling. Short-term (10-minute) and 24-hour HRV recordings were obtained. Time-domain, frequency-domain, and non-linear parameters were analyzed. Correlations between HRV indices and clinical variables were examined, and multiple regression analysis was performed to identify independent predictors of HRV reduction.


Results: All patient groups demonstrated significantly reduced HRV compared to controls, with diabetes mellitus showing the most profound impairment (56.5% reduction in SDNN, p<0.001), followed by CAD, hypertension, and COPD. Characteristic patterns included reduced overall HRV, impaired parasympathetic modulation (78.4% reduction in HF power in diabetes), relative sympathetic predominance (highest LF/HF ratio in COPD: 1.72±0.48), decreased complexity (lowest entropy in diabetes), and blunted circadian variations. Disease duration, glycemic parameters, inflammatory markers, and cardiac stress indicators correlated significantly with HRV reduction. Multiple regression identified disease type, age, disease duration, and glycemic control as independent predictors of autonomic dysfunction.


Conclusion: Distinct autonomic profiles exist across different chronic diseases, reflecting disease-specific pathophysiological mechanisms with important implications for risk stratification and targeted interventions. Integration of HRV assessment into clinical evaluation of chronic disease patients could enhance early detection of autonomic dysfunction and guide personalized therapeutic strategies.

Abstract 68 | pdf Downloads 13

References

1. Almeida-Santos, M. A., Barreto-Filho, J. A., Oliveira, J. L. M., Reis, F. P., da Cunha Oliveira, C. C., & Sousa, A. C. S. (2016). Aging, heart rate variability and patterns of autonomic regulation of the heart. Archives of Gerontology and Geriatrics, 63, 1-8. https://doi.org/10.1016/j.archger.2015.11.011
2. Bellavere, F., Ragazzi, E., Chilelli, N. C., Lapolla, A., & Bax, G. (2019). Autonomic testing: Which value for each cardiovascular test? An observational study. Journal of Diabetes and its Complications, 33(2), 133-138. https://doi.org/10.1016/j.jdiacomp.2018.10.011
3. Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PloS One, 13(4), e0195166. https://doi.org/10.1371/journal.pone.0195166
4. Carpeggiani, C., L'Abbate, A., Landi, P., Michelassi, C., Raciti, M., Macerata, A., & Emdin, M. (2021). Early assessment of heart rate variability is predictive of in-hospital death and major complications after acute coronary syndrome. International Journal of Cardiology, 96(3), 361-368. https://doi.org/10.1016/j.ijcard.2004.06.023
5. Chen, J., Yang, S. B., Liu, J., & Tang, Z. H. (2020). Diagnostic performance analysis for diabetic cardiovascular autonomic neuropathy based on short-term heart rate variability using Bayesian methods: preliminary analysis. Diabetology & Metabolic Syndrome, 12, 88. https://doi.org/10.1186/s13098-020-00595-3
6. Dobbs, W. C., Fedewa, M. V., MacDonald, H. V., Holmes, C. J., Cicone, Z. S., Plews, D. J., & Esco, M. R. (2019). The accuracy of acquiring heart rate variability from portable devices: A systematic review and meta-analysis. Sports Medicine, 49(3), 417-435. https://doi.org/10.1007/s40279-019-01061-5
7. Ernst, G. (2017). Heart rate variability—More than heart beats? Frontiers in Public Health, 5, 240. https://doi.org/10.3389/fpubh.2017.00240
8. Gerritsen, J., Dekker, J. M., TenVoorde, B. J., Bertelsmann, F. W., Kostense, P. J., Stehouwer, C. D., Heine, R. J., Nijpels, G., Heethaar, R. M., & Bouter, L. M. (2016). Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia, 43(5), 561-570. https://doi.org/10.1007/s001250051344
9. Goulart, C. D. L., Simon, J. C., Schneiders, P. D. B., San Martin, E. A., Cabiddu, R., Borghi-Silva, A., Trimer, R., & da Silva, A. L. G. (2017). Respiratory muscle strength effect on linear and nonlinear heart rate variability parameters in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, 12, 1207-1215. https://doi.org/10.2147/COPD.S127742
10. Hillebrand, S., Gast, K. B., de Mutsert, R., Swenne, C. A., Jukema, J. W., Middeldorp, S., Rosendaal, F. R., & Dekkers, O. M. (2013). Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace, 15(5), 742-749. https://doi.org/10.1093/europace/eus341
11. Huikuri, H. V., & Stein, P. K. (2013). Heart rate variability in risk stratification of cardiac patients. Progress in Cardiovascular Diseases, 56(2), 153-159. https://doi.org/10.1016/j.pcad.2013.07.003
12. Liu, Y., Zhu, S. H., Wang, G. H., Ye, F., & Li, P. Z. (2021). Validity and reliability of multiparameter physiological measurements recorded by the Equivital LifeMonitor during activities of various intensities. Journal of Occupational and Environmental Hygiene, 10(2), 78-85. https://doi.org/10.1080/15459624.2012.747404
13. Malik, M., Camm, A. J., Bigger Jr, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., & Kleiger, R. E. (2017). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. https://doi.org/10.1093/oxfordjournals.eurheartj.a060333
14. Mohammed, J., Meeus, M., Derom, E., Da Silva, H., & Calders, P. (2018). Evidence for autonomic function and its influencing factors in subjects with COPD: A systematic review. Respiratory Care, 63(11), 1388-1401. https://doi.org/10.4187/respcare.05910
15. Prabhakaran, D., Jeemon, P., Sharma, M., Roth, G. A., Johnson, C., Harikrishnan, S., Gupta, R., Kondal, D., Mohanan, P. P., Mathur, P., Bhattacharya, S., Goenka, S., Reddy, K. S., Naik, N., Dorairaj, P., Reddy, K. S., Tandon, N., & Roy, A. (2018). The changing patterns of cardiovascular diseases and their risk factors in the states of India: The Global Burden of Disease Study 1990–2016. The Lancet Global Health, 6(12), e1339-e1351. https://doi.org/10.1016/S2214-109X(18)30407-8
16. Roque, A. L., Valenti, V. E., Massetti, T., da Silva, T. D., Monteiro, C. B. M., Oliveira, F. R., da Silva Alves, R. C., Adami, F., de Godoi Carneiro, J. R., & de Abreu, L. C. (2018). Chronic obstructive pulmonary disease and heart rate variability: a literature update. International Archives of Medicine, 8, 1-8. https://doi.org/10.3823/1661
17. Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., Schmidt, G., & Yamamoto, Y. (2015). Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace, 17(9), 1341-1353. https://doi.org/10.1093/europace/euv015
18. Schroeder, E. B., Liao, D., Chambless, L. E., Prineas, R. J., Evans, G. W., & Heiss, G. (2003). Hypertension, blood pressure, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension, 42(6), 1106-1111. https://doi.org/10.1161/01.HYP.0000100444.71069.73
19. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
20. Singh, J. P., Larson, M. G., Tsuji, H., Evans, J. C., O'Donnell, C. J., & Levy, D. (2018). Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension, 32(2), 293-297. https://doi.org/10.1161/01.hyp.32.2.293
21. Spallone, V., Ziegler, D., Freeman, R., Bernardi, L., Frontoni, S., Pop-Busui, R., Stevens, M., Kempler, P., Hilsted, J., Tesfaye, S., Low, P., & Valensi, P. (2019). Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes/Metabolism Research and Reviews, 27(7), 639-653. https://doi.org/10.1002/dmrr.1239
22. Stuckey, M. I., & Petrella, R. J. (2013). Heart rate variability in type 2 diabetes mellitus. Critical Reviews in Biomedical Engineering, 41(2), 137-147. https://doi.org/10.1615/CritRevBiomedEng.2013006849
23. Thayer, J. F., & Lane, R. D. (2018). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81-88. https://doi.org/10.1016/j.neubiorev.2008.08.004
24. Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122-131. https://doi.org/10.1016/j.ijcard.2009.09.543
25. Vanderlei, L. C. M., Pastre, C. M., Freitas Jr, I. F., & Godoy, M. F. (2020). Geometric indexes of heart rate variability in obese and eutrophic children. Arquivos Brasileiros de Cardiologia, 95(1), 35-40. https://doi.org/10.1590/S0066-782X2010005000082
26. Vinik, A. I., Erbas, T., & Casellini, C. M. (2013). Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. Journal of Diabetes Investigation, 4(1), 4-18. https://doi.org/10.1111/jdi.12042
27. Williams, D. M., Keeble, C., Davies, M. J., Khunti, K., & Gray, L. J. (2019). Are changes in heart rate variability during hypoglycemia confounded by the presence of cardiovascular autonomic neuropathy in patients with diabetes? Diabetes Technology & Therapeutics, 21(3), 140-148. https://doi.org/10.1089/dia.2018.0331
28. World Health Organization. (2022). Noncommunicable diseases. Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases