A CROSS-SECTIONAL STUDY ON ASSESSMENT OF CT PERFUSION IMAGING IN ACUTE ISCHEMIC STROKE: CLINICAL BENEFITS AND LIMITATIONS
Main Article Content
Keywords
CT perfusion, acute ischemic stroke, imaging, clinical benefits,, limitations
Abstract
Background: Acute ischemic stroke (AIS) is a leading cause of morbidity and mortality worldwide, necessitating rapid and accurate diagnosis for timely intervention [1]. CT perfusion (CTP) imaging is increasingly utilized to assess cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT), aiding in differentiation between salvageable tissue and irreversibly damaged infarct core CT perfusion (CTP) imaging has emerged as a crucial tool in the evaluation of acute ischemic stroke (AIS). This cross-sectional study assesses the clinical benefits and limitations of CTP in the diagnosis and management of AIS. Materials and methods: This cross-sectional study was conducted on 150 patients who presented with suspected AIS within 24 hours of symptom onset. Inclusion criteria comprised adult patients (≥18 years) with neurologic deficits consistent with stroke. Exclusion criteria included contraindications to contrast media or prior intracranial hemorrhage Data from 150 patients presenting with suspected AIS were analyzed for imaging accuracy, treatment decision impact, and functional outcomes. Results and conclusion: CTP effectively identified ischemic penumbra and core infarct in 87% of cases, improving thrombolysis decisions. However, limitations included radiation exposure, variability in perfusion thresholds, and technical artifacts. Overall, CTP enhances stroke triage and treatment but requires careful interpretation to minimize false positives and negatives.
References
2. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment in acute stroke: imaging findings and clinical correlations. Radiology. 2006;240(3):820-828.
3. Bivard A, Levi CR, Spratt NJ, Parsons MW. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology. 2013;258(1):214-222.
4. Campbell, Bruce C V et al. “Extending thrombolysis to 4·5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data.” Lancet (London, England) vol. 394,10193 (2017): 139-147. doi:10.1016/S0140-6736(19)31053-0
5. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317-1329.
6. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischemic stroke: a meta-analysis. Lancet. 2016;387(10029):1723-1731.
7. Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2). Stroke. 2012;43(8):2310-2316.
8. Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in acute stroke patients. Stroke. 2002;33(9):2217-2222.
9. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40(2):469-75.
10. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010;32(5):1024-37.
11. Parsons MW, Spratt N, Bivard A, Campbell BC, Miteff F, O'Brien B, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12):1099-107.
12. Mishra NK, Christensen S, Lansberg MG, Straka M, Kemp S, Mlynash M, et al. CT perfusion–based patient selection for endovascular reperfusion therapy in acute ischemic stroke. Stroke. 2014;45(2):466-72.
13. Campbell BC, Mitchell PJ, Yan B, Parsons MW, Christensen S, Churilov L, et al. A multicenter, randomized, controlled trial of tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573-82.
14. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11-21.
15. Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, González RG. MRI-based selection for intra-arterial stroke therapy: value of the Boston Acute Stroke Imaging Scale. Stroke. 2012;43(7):1772-4.
16. Boers AM, Marquering HA, Jochem JJ, Bammer R, Majoie CB, van Oostenbrugge RJ, et al. Automated cerebral perfusion image analysis in acute ischemic stroke. Stroke. 2016;47(1):93-9.
17. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317-29.
18. Liebeskind DS, Jahan R, Menon BK, Goyal M. Imaging-based selection for endovascular stroke treatment. J Stroke. 2017;19(1):10-20.
19. Menon BK, Almekhlafi M, Pereira VM, Gralla J, Bonafé A, Davalos A, et al. Optimal computed tomographic perfusion thresholds for ischemic core and penumbra: analysis of the EXTEND-IA trial. Stroke. 2017;48(5):1355-60.
20. Campbell BCV, Donnan GA, Lees KR, Hacke W, Khatri P, Hill MD, et al. Endovascular thrombectomy for stroke: current best practice and future goals. Stroke Vasc Interv Neurol. 2017;1(2):e000037.
21. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316(12):1279-88.
22. Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler L, Bammer R, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE-2). Stroke. 2012;43(3):670-7.