FORMULATION DEVELOPMENT OF SAXAGLIPTINE MICROPARTICULATED DRUG DELIVERY SYSTEM FOR ENHANCING BIOAVAILABILITY AND STABILITY

Main Article Content

Gyan Singh
(Dr.) Satish Kumar Sharma

Keywords

Formulation, Microparticles, Saxagliptin, diabetes, therapeutic efficacy

Abstract

This study investigates the design, development, and evaluation of sustained-release Saxagliptin microparticles. This approach facilitated an assessment of the concentration of coating material influenced the drug release rate. The solvent evaporation method proved effective in producing discrete, spherical microparticles characterized by good flowability and minimal stickiness. a few formulation techniques and analytical methods for Saxagliptin have been reported15-21, Therefore, this investigation seeks to design and develop novel microparticles of Saxagliptin aimed at treating diabetes22. This approach focuses on creating a controlled release formulation using a lower drug dose, thereby aiming to achieve consistent plasma drug concentrations. This may lead to enhanced patient compliance due to reduced dosing frequency, improved therapeutic efficacy, and minimized side effects resulting from a more controlled drug release profile. This study aims to develop a microparticle-based drug delivery system for Saxagliptin, its short biological half-life of approximately 3.1 hours necessitates frequent dosing (twice daily), which can contribute to non-adherence. Currently available in conventional tablet forms (2.5-5 mg/day), controlled release formulations present a promising solution. microparticles can encapsulate active ingredients, protecting them from degradation and facilitating their transport to specific sites within the body13. Their unique size and surface characteristics also allow for functionalization, enabling enhanced interaction with biological systems and improved efficacy in medical applications14.

Abstract 55 | PDF Downloads 35

References

1. Rodolfo JG, Jennifer MT, Cecilia CLW, Rozalina GMC. Advances in the management of type 2 diabetes in adults. BMJ Med. 2023; 2: e000372.
2. Galicia GU, Benito VA, Jebari S, Larrea SA, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020; 21(7): 6275.
3. Ralph AD, Curtis LT, Muhammad AG, Eugenio C. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr. 2014; 27(2): 100-112.
4. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of currenttrends. Oman Med J. 2012; 27(4): 269-273.
5. Lin Y, Sun Z. Current views on type 2 diabetes. J Endocrinol. 2010; 204(1): 1-11.
6. Dave DJ. Saxagliptin: A dipeptidyl peptidase-4 inhibitor in the treatment of type 2 diabetes mellitus. J Pharmacol Pharmacother. 2011; 2(4): 230-235.
7. Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG. Discovery and preclinical profile of Saxagliptin (BMS477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005; 48(15): 5025-5037.
8. Anderson R, Hayes J, Stephens JW. Pharmacokinetic, pharmacodynamic and clinical evaluation of Saxagliptin in type 2 diabetes. Expert Opin Drug Metab Toxicol. 2016; 12(4): 467-473.
9. Konya H, Yano Y, Matsutani S, Tsunoda T, Ikawa T, Kusunoki Y, Matsuo T, Miuchi M, Katsuno T, Hamaguchi T, Miyagawa J, Namba M. Profile of Saxagliptin in the treatment of type 2 diabetes: focus on Japanese patients. Ther Clin Risk Manag. 2014; 10: 547-558.
10. Ali S, Fonseca V. Saxagliptin overview: special focus on safety and adverse effects. Expert Opin Drug Saf. 2013; 12(1): 103-109.
11. Bale S, Khurana A, Reddy ASS, Singh M, Godugu C. Overview on therapeutic applications of microparticle drug delivery systems. Crit Rev Ther Drug Carrier Syst.2016; 33(4): 309-361.
12. Arpana SK, Krishna PT, Smita M, Dhole SN. A review on microparticulate drug delivery system. Bull Env Pharmacol Life Sci. 2021; 10(3): 163- 177.
13. Kumari S, Menu N, Geeta A, Puneet, Upendra KJ, Pankaj S. Microparticles drug delivery system a review. World J Pharm Pharm Sci.2016; 5(3): 543-566.
14. Pavan Kumar B, Sarath Chandiran I, Bhavya B, Sindhuri M. Microparticulate drug delivery system; a review. Ind J Pharm Sci Res. 2011; 1(1): 19-37.
15. Patil ND, Gondkar SB, Saudagar RB. Formulation and evaluation of mucoadhesive buccal patch of Saxagliptin hydrochloride. Res J Pharm Dosage Forms Technol.2016; 8(4): 237-247.
16. Rajani V, Rajendra Prasad Y, Lakshmana Rao A. In vivo evaluation of optimized formulation of Dapagliflozin and Saxagliptin bilayered tablets. Indian Drugs. 2024; 61(3): 56-60.
17. Rajani V, Rajendra Prasad Y, Lakshmana Rao A. Development and validation of a stability indicating RP-HPLC method for simultaneous estimation of Teneligliptin and Metformin. Turkish J Pharml Sci. 2020; 17(2): 141-147.
18. Rajani V, Rajendra Prasad Y, Lakshmana Rao A. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of Dapagliflozin and Saxagliptin in pure and pharmaceutical dosage form. The Pharm Rev. 2019; January-February: 107-113.
19. Rajani V, Rajendra Prasad Y, Lakshmana Rao A. Formulation and in vitro evaluation of Teneligliptin and Metformin bilayered tablets. J Int Pharm Sci. 2019; 6(1): 1-10.
20. Sai Sruthi A, Saidatri A, Lakshmana Rao A. Development and validation of Sitagliptin and Simvastatin tablets by using RP-HPLC method. Int J Applied Pharm Sci. 2017; 4(1): 36-43.
21. Raja T, Lakshmana Rao A. Validated HPTLC method for simultaneous estimation of Metformin Hydrochloride and Sitagliptin Phosphate in bulk drug and formulation. Rasayan J Chem. 2012; 5(3): 407-413.
22. González L, Kostrzewska M, Baoguang M, Li L, Hansen JH, Hvilsted S, Skov AL. Preparation and characterization of silicone liquid core/polymer shell microcapsules via internal phase separation. Macromolecular Materials and Engineering. 2014 Oct;299(10):1259-67.
23. Khandbahale SV. Microencapsulation-A novel approach in drug delivery: A review. Asian Journal of Research in Pharmaceutical Science. 2020;10(1):39-50.
24. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica. 2019 Sep;87(3):20.
25. Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Delivery and Translational Research. 2020 Apr;10(2):339-53.
26. Rani S, Goel A. Microencapsulation Technology in Textiles: A Review Study. Pharma Innov. J. 2021:660-3.
27. Timin AS, Gould DJ, Sukhorukov GB. Multi-layer microcapsules: Fresh insights and new applications. Expert Opinion on Drug Delivery. 2017 May 4;14(5):583-7.
28. Vinodbhai PK, Gohel MC, Parikh RK, Bariya S, Suthar RN. Sustained release floating microspheres of acyclovir: formulation, optimization, characterization and in vitro evaluation. Int J Drug Develop Res. 2011 Jan;3:242-51.
29. Arab HH, Ashour AM, Gad AM, Mahmoud AM, Kabel AM. Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage. Life Sciences. 2021 Sep 1;280:119743.
30. Abdelrahman AE, Maher HM, Alzoman NZ. HPTLC method for the determination of metformin hydrochloride, saxagliptin hydrochloride, and dapagliflozin in pharmaceuticals. Current Analytical Chemistry. 2020 Aug 1;16(5):609-19.
31. Helal MG, Megahed NA, Abd Elhameed AG. Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life sciences. 2019 Dec 15;239:117017.
32. Müller‐Wieland D, Kellerer M, Cypryk K, Skripova D, Rohwedder K, Johnsson E, Garcia‐Sanchez R, Kurlyandskaya R, Sjöström CD, Jacob S, Seufert J. Efficacy and safety of dapagliflozin or dapagliflozin plus saxagliptin versus glimepiride as add‐on to metformin in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2018 Nov;20(11):2598-607.
33. Chang YP, Sun B, Han Z, Han F, Hu SL, Li XY, Xue M, Yang Y, Chen L, Li CJ, Chen LM. Saxagliptin attenuates albuminuria by inhibiting podocyte epithelial-to-mesenchymal transition via SDF-1α in diabetic nephropathy. Frontiers in pharmacology. 2017 Nov 1;8:780.
34. GangadharanKomala M, Gross S, Zaky A, Pollock C, Panchapakesan U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology. 2016 May;21(5):423-31.
35. Udell JA, Bhatt DL, Braunwald E, Cavender MA, Mosenzon O, Steg PG, Davidson JA, Nicolau JC, Corbalan R, Hirshberg B, Frederich R. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI 53 Trial. Diabetes care. 2015 Apr 1;38(4):696-705.
36. Hirshberg B, Parker A, Edelberg H, Donovan M, Iqbal N. Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus. Diabetes/metabolism research and reviews. 2014 Oct;30(7):556-69.
37. Ali S, Fonseca V. Saxagliptin overview: special focus on safety and adverse effects. Expert opinion on drug safety. 2013 Jan 1;12(1):103-9.
38. Granström O, Bergenheim K, McEwan P, Sennfält K, Henriksson M. Cost-effectiveness of saxagliptin (Onglyza®) in type 2 diabetes in Sweden. Primary Care Diabetes. 2012 Jul 1;6(2):127-36.
39. Boulton D, Li L, Frevert EU, Tang A, Castaneda L, Vachharajani NN, Kornhauser DM, Patel CG. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clinical pharmacokinetics. 2011 Apr;50(4):253-65.
40. Frederich R, Alexander JH, Fiedorek FT, Donovan M, Berglind N, Harris S, Chen R, Wolf R, Mahaffey KW. A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes. Postgraduate medicine. 2010 May 1;122(3):16-27.
41. Wang W. Microparticulate Drug Delivery Systems for Chinese Medicines. Novel Drug Delivery Systems for Chinese Medicines. 2021:175-97.
42. Birk SE, Boisen A, Nielsen LH. Polymeric nano-and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews. 2021 Jul 1;174:30-52.
43. Hazra M, Mandal DD, Mandal T, Bhuniya S, Ghosh M. Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharmaceutical Journal. 2015 Sep 1;23(4):429-36.
44. Lu Y, Sturek M, Park K. Microparticles produced by the hydrogel template method for sustained drug delivery. International journal of pharmaceutics. 2014 Jan 30;461(1-2):258-69.
45. Amatya S, Park EJ, Park JH, Kim JS, Seol E, Lee H, Choi H, Shin YH, Na DH. Drug release testing methods of polymeric particulate drug formulations. Journal of Pharmaceutical Investigation. 2013 Aug;43(4):259-66.
46. Stolnik SS, Illum L, Davis SS. Long circulating microparticulate drug carriers. Advanced drug delivery reviews. 2012 Dec 1;64:290-301.
47. Huang LY, Yu DG, Branford-White C, Zhu LM. Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. Journal of Materials Science. 2012 Feb;47(3):1372-7.
48. Passerini N, Qi S, Albertini B, Grassi M, Rodriguez L, Craig DQ. Solid lipid microparticles produced by spray congealing: influence of the atomizer on microparticle characteristics and mathematical modeling of the drug release. Journal of Pharmaceutical Sciences. 2010 Feb 1;99(2):916-31.