ADVANCED COATINGS AND NOVEL BEARING SURFACES IN JOINT ARTHROPLASTY: EXPLORING THE FUTURE OF IMPLANT LONGEVITY

Main Article Content

Dr Kuldip Nandani

Keywords

implant longevity, advanced coatings, novel bearing surfaces, nanotechnology, additive manufacturing, artificial intelligence

Abstract

Longevity and performance of joint implants is of the highest clinical relevance in orthopedic surgery where improvements in implant coatings and bearing surfaces must be achieved. In this review, the most recent developments in highly cross linked polyethylene (HXLPE), bioactive materials, diamond like carbon (DLC) coatings, and hydroxyapatite coatings for improving the wear resistance, osteointegration and biocompatibility are discussed. This paper analyzes the efficacy of advanced surface engineering techniques such as nanotechnology and additive manufacturing by analyzing the clinical and preclinical studies to improve the implant stability and to reduce the failure rates. Artificial intelligence (AI) is also integrated into material selection for implants to further optimize design and ensure patient-specific options. Although these advances provide a plethora of benefits, regulations, manufacturing scale and long follow up are still pending. The future directions indicate the function of biosensors, smart implants, and self healing coatings in altering the joint arthroplasty. Through the resolution of these challenges and the utilization of new technologies, the upcoming breed orthopedic implants endeavors to decrease revision rates, strengthen patient returns and better healthcare cost effectiveness.

Abstract 70 | pdf Downloads 58

References

1. Abdudeen, A., Abu Qudeiri, J. E., Kareem, A., & Valappil, A. K. (2022). Latest developments and insights of orthopedic implants in biomaterials using additive manufacturing technologies. Journal of Manufacturing and Materials Processing, 6(6), 162.
2. Akhaia, S., & Wadhwab, A. S. (2024). Recent Advances in Bio-Tribology From Joint Lubrication to Medical Implants: A Review. Journal of Materials, 2(2), 125-135.
3. Amirtharaj Mosas, K. K., Chandrasekar, A. R., Dasan, A., Pakseresht, A., & Galusek, D. (2022). Recent advancements in materials and coatings for biomedical implants. Gels, 8(5), 323.
4. Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in materials science, 133, 101053.
5. Blunn, G. W., Ferro De Godoy, R., Meswania, J., Briggs, T. W. R., Tyler, P., Hargunani, R., Wilson, H., Khan, I., Marriott, T., & Coathup, M. J. (2019). A novel ceramic coating for reduced metal ion release in metal-on-metal hip surgery. Journal of biomedical materials research. Part B, Applied biomaterials, 107(6), 1760–1771.
6. Böke, F., Labude, N., Lauria, I., Ernst, S., Müller-Newen, G., Neuss, S., & Fischer, H. (2018). Biological Activation of Bioinert Medical High-Performance Oxide Ceramics by Hydrolytically Stable Immobilization of c(RGDyK) and BMP-2. ACS applied materials & interfaces, 10(45), 38669–38680.
7. Carli, A. V., Bhimani, S., Yang, X., Shirley, M. B., de Mesy Bentley, K. L., Ross, F. P., & Bostrom, M. P. (2017). Quantification of Peri-Implant Bacterial Load and in Vivo Biofilm Formation in an Innovative, Clinically Representative Mouse Model of Periprosthetic Joint Infection. The Journal of bone and joint surgery. American volume, 99(6), e25.
8. Choudhari, A., Gupta, A. K., Kumar, A., Kumar, A., Gupta, A., Chowdhury, N., & Kumar, A. (2024). Wear and friction mechanism study in knee and hip rehabilitation: A comprehensive review. Applications of biotribology in biomedical systems, 345-432.
9. Coden, G., Matzko, C., Hushmendy, S., Macaulay, W., & Hepinstall, M. (2021). Impact of Acetabular Implant Design on Aseptic Failure in Total Hip Arthroplasty. Arthroplasty today, 7, 60–68.
10. Cowie, R. M., & Jennings, L. M. (2021). Third body damage and wear in arthroplasty bearing materials: A review of laboratory methods. Biomaterials and biosystems, 4, 100028.
11. Dalai, N., & Sreekanth, P. S. R. (2021). UHMWPE / nanodiamond nanocomposites for orthopaedic applications: A novel sandwich configuration based approach. Journal of the mechanical behavior of biomedical materials, 116, 104327.
12. Demcoe, A. R., Bohm, E. R., Hedden, D. R., Burnell, C. D., & Turgeon, T. R. (2019). Does oxidized zirconium make a difference? Midterm cohort survivorship of symmetric posterior condyle posterior-stabilized total knee arthroplasty. Canadian journal of surgery. Journal canadien de chirurgie, 62(2), 118–122.
13. Du, Z., Zhu, Z., Yue, B., Li, Z., & Wang, Y. (2018). Feasibility and Safety of a Cemented PEEK-on-PE Knee Replacement in a Goat Model: A Preliminary Study. Artificial organs, 42(8), E204–E214.
14. Feng, J. B., Chen, R., Li, B., Jiang, B. H., & Li, B. (2023). The Current Trend of Antibacterial Prostheses and Prosthetic Surface Coating Technologies to Prevent Prosthetic Joint Infection for Artificial Joint Replacement. Journal of Biomaterials and Tissue Engineering, 13(11), 1046-1060.
15. Flamant, Q., Caravaca, C., Meille, S., Gremillard, L., Chevalier, J., Biotteau-Deheuvels, K., Kuntz, M., Chandrawati, R., Herrmann, I. K., Spicer, C. D., Stevens, M. M., & Anglada, M. (2016). Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants. Acta biomaterialia, 46, 308–322.
16. Gascoyne, T. C., Lanting, B. A., Derksen, K. J., Teeter, M. G., & Turgeon, T. R. (2018). Damage Assessment of Retrieved Birmingham Monoblock Cups: Is Conversion to Dual-Mobility Head a Viable Revision Option?. The Journal of arthroplasty, 33(4), 1242–1246.
17. Goodman, S. B., Gallo, J., Gibon, E., & Takagi, M. (2020). Diagnosis and management of implant debris-associated inflammation. Expert review of medical devices, 17(1), 41–56.
18. Grieco, P. W., Pascal, S., Newman, J. M., Shah, N. V., Stroud, S. G., Sheth, N. P., & Maheshwari, A. V. (2018). New alternate bearing surfaces in total hip arthroplasty: A review of the current literature. Journal of clinical orthopaedics and trauma, 9(1), 7–16.
19. Kamara, E., Robinson, J., Bas, M. A., Rodriguez, J. A., & Hepinstall, M. S. (2017). Adoption of Robotic vs Fluoroscopic Guidance in Total Hip Arthroplasty: Is Acetabular Positioning Improved in the Learning Curve?. The Journal of arthroplasty, 32(1), 125–130.
20. Kambhampati, S. B., Rajagopalan, S., Abraham, V. T., Poduval, M., & Maini, L. (2024). Implant Design and Its Applications in the Fixation of Osteoporotic Bones: Newer Technologies in Nails, Plates and External Fixators. Indian Journal of Orthopaedics, 1-14.
21. Khalifa, A. A., & Bakr, H. M. (2021). Updates in biomaterials of bearing surfaces in total hip arthroplasty. Arthroplasty, 3(1), 32.
22. Kilb, B. K. J., Kurmis, A. P., Parry, M., Sherwood, K., Keown, P., Masri, B. A., Duncan, C. P., & Garbuz, D. S. (2018). Frank Stinchfield Award: Identification of the At-risk Genotype for Development of Pseudotumors Around Metal-on-metal THAs. Clinical orthopaedics and related research, 476(2), 230–241.
23. Krishnan, M. R., Rajaratnam, J. D., Peiris, D., Gupta, M., Wigmore, E., & Heinrichs, C. (2024). A unique tribological inverted bearing solution for reverse shoulder arthroplasty: Vitamin E and ceramic (unique inverse pairings in rTSR). Shoulder & elbow, 17585732241265627. Advance online publication.
24. Kumar, A., & Singh, G. (2024). Surface modification of Ti6Al4V alloy via advanced coatings: Mechanical, Tribological, Corrosion, Wetting, and Biocompatibility studies. Journal of Alloys and Compounds, 174418.
25. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., & Kim, K. H. (2020). Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Materials science and engineering: C, 106, 110154.
26. Kvarda, P., Toth, L., Horn-Lang, T., Susdorf, R., Ruiz, R., & Hintermann, B. (2023). How Does a Novel In Situ Fixed-bearing Implant Design Perform in Revision Ankle Arthroplasty in the Short Term? A Survival, Clinical, and Radiologic Analysis. Clinical orthopaedics and related research, 481(7), 1360–1370.
27. Liang, W., Zhou, C., Bai, J., Zhang, H., Long, H., Jiang, B., ... & Zhao, J. (2024). Current developments and future perspectives of nanotechnology in orthopedic implants: a updated review. Frontiers in Bioengineering and Biotechnology, 12, 1342340.
28. Lowry, M., Rosenbaum, H., & Walker, P. S. (2016). Evaluation of total knee mechanics using a crouching simulator with a synthetic knee substitute. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 230(5), 421–428.
29. Maccario, C., Tan, E. W., Di Silvestri, C. A., Indino, C., Kang, H. P., & Usuelli, F. G. (2021). Learning curve assessment for total ankle replacement using the transfibular approach. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons, 27(2), 129–137.
30. Maslivec, A., Halewood, C., Clarke, S., & Cobb, J. (2023). Hip resurfacing arthroplasty in women: A novel ceramic device enables near normal gait function. Gait & posture, 103, 166–171.
31. Mastnak, T., Maver, U., & Finšgar, M. (2022). Addressing the needs of the rapidly aging society through the development of multifunctional bioactive coatings for orthopedic applications. International journal of molecular sciences, 23(5), 2786.
32. Mathis, D. T., Schmidli, J., Amsler, F., Henckel, J., Hothi, H., Hart, A., & Hirschmann, M. T. (2022). Comparative retrieval analysis of a novel anatomic tibial tray backside: alterations in tibial component design and surface coating can increase cement adhesions and surface roughness. BMC musculoskeletal disorders, 23(1), 474.
33. Mathis, D. T., Schmidli, J., Hirschmann, M. T., Amsler, F., Henckel, J., Hothi, H., & Hart, A. (2021). Comparative retrieval analysis of antioxidant polyethylene: bonding of vitamin-E does not reduce in-vivo surface damage. BMC musculoskeletal disorders, 22(1), 1003.
34. Milošev, I., Levašič, V., Kovač, S., Sillat, T., Virtanen, S., Tiainen, V. M., & Trebše, R. (2021). Metals for joint replacement. In Joint replacement technology (pp. 65-122). Woodhead Publishing.
35. Momenzadeh, M. (2024). Study and analysis of the evolution of knee arthroplasty surgery through its technological innovation (Doctoral dissertation, Massachusetts Institute of Technology).
36. Rafiq, N. M., Wang, W., Liew, S. L., Chua, C. S., & Wang, S. (2023). A review on multifunctional bioceramic coatings in hip implants for osteointegration enhancement. Applied Surface Science Advances, 13, 100353.
37. Reinitz, S. D., Engler, A. J., Carlson, E. M., & Van Citters, D. W. (2016). Equal channel angular extrusion of ultra-high molecular weight polyethylene. Materials science & engineering. C, Materials for biological applications, 67, 623–628.
38. Robinson, D. L., Kersh, M. E., Walsh, N. C., Ackland, D. C., de Steiger, R. N., & Pandy, M. G. (2016). Mechanical properties of normal and osteoarthritic human articular cartilage. Journal of the mechanical behavior of biomedical materials, 61, 96–109.
39. Rodrigues, M. M., Fontoura, C. P., Garcia, C. S. C., Martins, S. T., Henriques, J. A. P., Figueroa, C. A., Roesch-Ely, M., & Aguzzoli, C. (2019). Investigation of plasma treatment on UHMWPE surfaces: Impact on physicochemical properties, sterilization and fibroblastic adhesion. Materials science & engineering. C, Materials for biological applications, 102, 264–275.
40. Saragas, N. P., Ferrao, P. N. F., & Strydom, A. (2021). A new lesser metatarsophalangeal joint replacement arthroplasty design - in vitro and cadaver studies. BMC musculoskeletal disorders, 22(1), 424.
41. Schaffler, B. C., Raymond, H. E., Black, C. S., Habibi, A. A., Ehlers, M., Duncan, S. T., & Schwarzkopf, R. (2024). Two-Year Outcomes of Novel Dual-Mobility Implant in Primary Total Hip Arthroplasty. Advances in orthopedics, 2024, 4125965.
42. Shafafy, R., Foote, J., & Hargrove, R. (2015). A novel technique for identification of fractured ceramic acetabular liner in total hip arthroplasty: a case report. Hip international : the journal of clinical and experimental research on hip pathology and therapy, 25(5), 492–494.
43. Shah, R., Pai, N., Khandekar, R., Aslam, R., Wang, Q., Yan, Z., & Rosenkranz, A. (2024). DLC coatings in biomedical applications–Review on current advantages, existing challenges, and future directions. Surface and Coatings Technology, 131006.
44. Shih, K. S., Lin, C. C., Lu, H. L., Fu, Y. C., Lin, C. K., Li, S. Y., & Lu, T. W. (2020). Patient-specific instrumentation improves functional kinematics of minimally-invasive total knee replacements as revealed by computerized 3D fluoroscopy. Computer methods and programs in biomedicine, 188, 105250.
45. Shon, H. C., Lim, E. J., Yang, J. Y., & Jeon, S. J. (2022). Femoral head fracture with large crushed defect in weight-bearing area treated with autologous osteochondral transplantation (repositionplasty): A case report. Medicine, 101(52), e32569.
46. Siskey, R., Ciccarelli, L., Lui, M. K., & Kurtz, S. M. (2016). Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study. Clinical orthopaedics and related research, 474(11), 2428–2440.
47. Skjöldebrand, C., Tipper, J. L., Hatto, P., Bryant, M., Hall, R. M., & Persson, C. (2022). Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Materials Today Bio, 15, 100270.
48. Stokes, M. D., Greene, B. C., Pietrykowski, L. W., Gambon, T. M., Bales, C. E., & DesJardins, J. D. (2018). The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 232(3), 282–288.
49. Takatori, Y., Moro, T., Ishihara, K., Kamogawa, M., Oda, H., Umeyama, T., Kim, Y. T., Ito, H., Kyomoto, M., Tanaka, T., Kawaguchi, H., & Tanaka, S. (2015). Clinical and radiographic outcomes of total hip replacement with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners: three-year results of a prospective consecutive series. Modern rheumatology, 25(2), 286–291.
50. Thompson, Z., Khoshbin, A., Ward, S., Waddell, J. P., & Atrey, A. (2020). The early- to medium-term results of a hemispherical, porous coated acetabular shell with multiple different bearing combinations are excellent with the exception of metal-on-metal. International orthopaedics, 44(12), 2537–2543.
51. Tripathi, S., Raheem, A., Dash, M., Kumar, P., Elsebahy, A., Singh, H., ... & Nanda, H. S. (2024). Surface engineering of orthopedic implants for better clinical adoption. Journal of Materials Chemistry B, 12(44), 11302-11335.
52. Tsikandylakis, G., Mortensen, K. R. L., Gromov, K., Troelsen, A., Malchau, H., & Mohaddes, M. (2020). The Use of Porous Titanium Coating and the Largest Possible Head Do Not Affect Early Cup Fixation: A 2-Year Report from a Randomized Controlled Trial. JB & JS open access, 5(4), e20.00107.
53. Warburton, K. J., Everingham, J. B., Helms, J. L., Kazanovicz, A. J., Hollar, K. A., Brourman, J. D., Fox, S. M., & Lujan, T. J. (2018). Wear testing of a canine hip resurfacing implant that uses highly cross-linked polyethylene. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 36(4), 1196–1205.
54. Wei, H., Song, X., Liu, P., Liu, X., Yan, X., & Yu, L. (2022). Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. Biomaterials Advances, 135, 212739.
55. Weißmann, V., Boss, C., Bader, R., & Hansmann, H. (2018). A novel approach to determine primary stability of acetabular press-fit cups. Journal of the mechanical behavior of biomedical materials, 80, 1–10.
56. Yang, R., Falk, A., Hoang, B. H., & Geller, D. S. (2022). Fluoroscopic Percutaneous Fixation of Periacetabular Metastatic Cancer: The Tripod Technique. Instructional course lectures, 71, 221–230.
57. Zorzi, A. R., Toumi, H., & Lespessailles, E. (Eds.). (2023). Arthroplasty: Advanced Techniques and Future Perspectives. BoD–Books on Demand.
58. Zou, A. H., Novikov, D., Feng, J. E., Anoushiravani, A. A., Schwarzkopf, R., & Vigdorchik, J. M. (2018). Liner dissociation leading to catastrophic failure of an Oxinium femoral head. Arthroplasty today, 5(1), 21–25.