PRODUCTION OF POLYHYDROXYBUTYRATE FROM BACILLUS MEGATERIUM BY USING LIGNIN FROM COIR PITH
Main Article Content
Keywords
Polyhydroxybutyrate, Bioplastic, Bacillus megaterium, coirpith, lignin extraction
Abstract
One of the serious environmental issues is the outbreak of petroleum based plastics which are non-biodegradable and toxic resulting in global warming. To overcome the environmental issue the present study focuses on replacing the harmful plastics by innovative strategy, the bioconversion of Kraft lignin (KL) into polyhydroxybutyrate (PHB) a bioplastic produced by bacterium Bacillus megaterium strain MTCC 8944 using KL as the sole carbon source. The strain was able to accumulate endogenously 73% of PHB with culture optimization of 350 C at 7.0 pH under constant aeration of 120rpm for 48 hours. Further the PHB extracted was characterized by Fourier Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometric (GC-MS) analysis. These optimization results proved the bacteria to be best strain capable of converting KL by lignin depolymerisation and producing PHB as alternate strategy of sustainable renewable resource utilization in industrial era.
References
2. Brinda Devi, A., Valli Nachiyar, C., Kaviyarasi, T., & Samrot, A. V. (2015). Characterization of polyhydroxybutyrate synthesized by Bacillus Cereus. International Journal of Pharmacy and Pharmaceutical Sciences, 7(3), 140–144.
3. Thapa, C., Shakya, P., Shrestha, R., Pal, S., & Manandhar, P. (2019). Isolation of Polyhydroxybutyrate (PHB) Producing Bacteria, Optimization of Culture Conditions for PHB production, Extraction and Characterization of PHB. Nepal Journal of Biotechnology, 6(1), 62–68. https://doi.org/10.3126/njb.v6i1.22339,
4. Sharma, M., & Dhingra, H. K. (2015). Isolation and Culture Conditions Optimization For PHB Production by Pseudochrobactrum asaccharolyticum. 4(10), 1895–1901.
5. Mostafa, Y. S., Alrumman, S. A., Alamri, S. A., Otaif, K. A., Mostafa, M. S., & Alfaify, A. M. (2020). Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65858-5.
6. Shi, Y., Yan, X., Li, Q., Wang, X., liu, M., Xie, S., Chai, L., & Yuan, J. (2017). Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochemistry, 52, 238–242. https://doi.org/10.1016/j.procbio.2016.10.004.
7. Carpine, R., Olivieri, G., Hellingwerf, K. J., Pollio, A., & Marzocchella, A. (2020). Industrial production of poly-β-hydroxybutyrate from CO2: Can cyanobacteria meet this challenge? Processes, 8(3), 1–23. https://doi.org/10.3390/pr8030323.
8. Sathesh P. C., &Murugesan A. G. (2010). Effective Utilization and Management of Coir industrial waste for the production of poly-β- hydroxybutyrate (PHB) using Bacterium Azotobacter Beijerinickii, Int. J. Environ.Res., 4(3):519-524.
9. Ravindranath, D. anita. (1999). Studies on Coconut Husk Retting and Bioinoculant Treatment for Process Improvement in a Natural System.
10. Reshma, J. K., & Thanga, V. S. G. (2011). Quantification of polyphenols during retting and characterization of bacteria from the Kadinamkulam Backwaters, Kerala. Journal of Environmental Biology, 32(1), 133–137.
11. Prabhu, S. R., & Thomas, G. V. (2002). Biological conversion of coir pith into a value-added organic resource and its application in Agri-Horticulture: Current status, prospect~ and. perspective. Journal of PlanWJ~on Crops, 30(1), 1–17.
12. Weng, C., Peng, X., & Han, Y. (2021). Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnology for Biofuels, 14(1), 1–22. https://doi.org/10.1186/s13068-021-01934-w.
13. Nandakumar, A., Chuah, J. A., & Sudesh, K. (2021). Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews, 147, 111237. https://doi.org/10.1016/j.rser.2021.111237
14. 14. Sasikumar, V., Priya, V., Shankar, C. S., & Sekar, D. S. (2014). Isolation and Preliminary Screening of Lignin Degrading Microbes. Jurnal of Academia and Industrial Research, 3(6), 2012–2015.
15. Danial, A. W., Hamdy, S. M., Alrumman, S. A., & El-rab, S. M. F. G. (2021). Bioplastic Production by Bacillus wiedmannii AS-02 OK576278 Using Different Agricultural Wastes., 9, 2395.
16. Xia, Q., Chen, C., Yao, Y., Li, J., He, S., Zhou, Y., Li, T., Pan, X., Yao, Y., & Hu, L. (2021). A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability. https://doi.org/10.1038/s41893-021-00702-w.
17. Gonçalves de Moura, I., Vasconcelos de Sá, A., Lemos Machado Abreu, A. S., & Alves Machado, A. V. (2017). Bioplastics from agro-wastes for food packaging applications. In Food Packaging. Elsevier Inc. https://doi.org/10.1016/b978-0-12-804302-8.00007-8.
18. Alves, L. P. S., Almeida, A. T., Cruz, L. M., Pedrosa, F. O., de Souza, E. M., Chubatsu, L. S., Müller-Santos, M., & Valdameri, G. (2017). A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry. Brazilian Journal of Medical and Biological Research, 50(1), 1–10. https://doi.org/10.1590/1414-431X20165492.
19. Khan, F. I., Aktar, L., Islam, T., & Saha, M. L. (2019). Isolation and Identification of Indigenous Poly-β-Hydroxybutyrate (PHB) Producing Bacteria from Different Waste Materials. Plant Tissue Culture and Biotechnology, 29(1), 15–24. https://doi.org/10.3329/ptcb.v29i1.41975.
20. Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19(1), 1–7. https://doi.org/10.1016/j.cbpa.2013.11.015.
21. Rencoret, J., Ralph, J., Marques, G., Gutiérrez, A., Martínez, Á. T., & Del Río, J. C. (2013). Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. Journal of Agricultural and Food Chemistry, 61(10), 2434–2445. https://doi.org/10.1021/jf304686x.
22. Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of Lignocellulosic Fibers and Lignin in. 1–26.
23. Chaijamrus, S., & Udpuay, N. (2008). Production and Characterization of Polyhydroxybutyrate from Molasses and Corn Steep Liquor produced by Bacillus megaterium ATCC 6748. X, 1–12.
24. Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Pugazhendhi, A., Kamaraj, B., Ruiz, A., Ramadoss, G., & Cornejo, P. (2021). Polyhydroxybutyrate production from ultrasound-aided alkaline pretreated finger millet straw using Bacillus megaterium strain CAM12. Bioresource Technology, 325, 124632. https://doi.org/10.1016/J.BIORTECH.2020.124632
25. Alshehrei, F. (2019). Production of polyhydroxybutyrate (PHB) by bacteria isolated from soil of Saudi Arabia. Journal of Pure and Applied Microbiology, 13(2), 897–904. https://doi.org/10.22207/JPAM.13.2.26
26. Nehra, K., Chhabra, N., Sidhu, P. K., Lathwal, P., & Rana, J. S. (2015). Molecular dentification and characterization of poly-β-hydroxybutyrate (PHB) producing bacteria isolated from contaminated soils. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 17(4), 1055–1064.