INVESTIGATING THE BIOCHEMICAL PATHWAYS INVOLVED IN GYNECOLOGICAL AGING: A STUDY OF HORMONAL FLUCTUATIONS, OXIDATIVE STRESS, AND THEIR IMPLICATIONS FOR REPRODUCTIVE HEALTH
Main Article Content
Keywords
Gynecological aging, hormonal fluctuations, oxidative stress, reproductive health, menopause.
Abstract
Objective: This study investigates the biochemical pathways involved in gynecological aging, focusing on the role of hormonal fluctuations and oxidative stress and their implications for reproductive health.
Methods: A cross-sectional observational study was conducted with 65 female participants aged 40–60 years. Hormonal levels (estrogen, progesterone, and FSH) and oxidative stress markers (MDA and TAC) were measured using blood samples. Patients were classified into early perimenopause, late perimenopause, and postmenopause groups. Statistical analyses, including correlation and regression, were used to evaluate relationships between hormones, oxidative stress, and aging.
Results: Estrogen and progesterone levels significantly decreased across the stages of reproductive aging, while FSH levels increased. Oxidative stress markers (MDA) rose, and antioxidant capacity (TAC) declined, especially in postmenopausal women. A strong negative correlation was found between estrogen and oxidative stress, while FSH positively correlated with oxidative damage.
Conclusion: It is concluded that hormonal fluctuations, particularly the decline in estrogen, combined with increased oxidative stress, accelerate gynecological aging and negatively impact reproductive health. Therapeutic approaches targeting oxidative stress and hormonal regulation may improve outcomes for aging women.
References
2. McGuckin, C.P., Forraz, N., Baradez, M.O., Navran, S., Zhao, J., Urban, R., Tilton, R. and Denner, L., 2005. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation, 38, pp.245–255. doi:10.1111/j.1365-2184.2005.00346.x.
3. Alviano, F., Fossati, V., Marchionni, C., Arpinati, M., Bonsi, L., Franchina, M., Lanzoni, G., Cantoni, S., Cavallini, C., Bianchi, F., et al., 2007. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Developmental Biology, 7(11). doi:10.1186/1471-213X-7-11.
4. Mohamed-Ahmed, S., Fristad, I., Lie, S.A., Suliman, S., Mustafa, K., Vindenes, H. and Idris, S.B., 2018. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Research & Therapy, 9(168). doi:10.1186/s13287-018-0914-1.
5. Xu, L., Liu, Y., Sun, Y., Wang, B., Xiong, Y., Lin, W., Wei, Q., Wang, H., He, W. and Wang, B., 2017. Tissue source determines the differentiation potentials of mesenchymal stem cells: A comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Research & Therapy, 8(275). doi:10.1186/s13287-017-0716-x.
6. Chu, D.T., Nguyen Thi Phuong, T., Tien, N.L.B., Tran, D.K., Minh, L.B., Thanh, V.V., Gia Anh, P., Pham, V.H. and Thi Nga, V., 2019. Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application. Journal of Clinical Medicine, 8(917). doi:10.3390/jcm8070917.
7. Si, Z., Wang, X., Sun, C., Kang, Y., Xu, J., Wang, X. and Hui, Y., 2019. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomedicine & Pharmacotherapy, 114, 108765. doi:10.1016/j.biopha.2019.108765.
8. Kim, W.S., Park, B.S. and Sung, J.H., 2009. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opinion on Biological Therapy, 9(879–887). doi:10.1517/14712590903039684.
9. Kim, W.S., Park, B.S., Kim, H.K., Park, J.S., Kim, K.J., Choi, J.S., Chung, S.J., Kim, D.D. and Sung, J.H., 2008. Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. Journal of Dermatological Science, 49(133–142). doi:10.1016/j.jdermsci.2007.08.004.
10. Shih, Y.C., Lee, P.Y., Cheng, H., Tsai, C.H., Ma, H. and Tarng, D.C., 2013. Adipose-derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plastic and Reconstructive Surgery, 132(940e–951e). doi:10.1097/PRS.0b013e3182a806ce.
11. Kim, Y., Jo, S.H., Kim, W.H. and Kweon, O.K., 2015. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Research & Therapy, 6(229). doi:10.1186/s13287-015-0236-5.
12. Toda, A., Okabe, M., Yoshida, T. and Nikaido, T., 2007. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. Journal of Pharmacological Sciences, 105(215–228). doi:10.1254/jphs.CR0070034.
13. Kim, E.Y., Lee, K.B. and Kim, M.K., 2014. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Reports, 47(135–140). doi:10.5483/BMBRep.2014.47.3.289.
14. Tamagawa, T., Oi, S., Ishiwata, I., Ishikawa, H. and Nakamura, Y., 2007. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Human Cell, 20(77–84). doi:10.1111/j.1749-0774.2007.00032.x.
15. Valle-Prieto, A. and Conget, P.A., 2010. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells and Development, 19(1885–1893). doi:10.1089/scd.2010.0093.
16. de Godoy, M.A., Saraiva, L.M., de Carvalho, L.R.P., Vasconcelos-Dos-Santos, A., Beiral, H.J.V., Ramos, A.B., Silva, L.R.P., Leal, R.B., Monteiro, V.H.S., Braga, C.V., et al., 2018. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers. Journal of Biological Chemistry, 293(1957–1975). doi:10.1074/jbc.M117.807180.
17. Liu, H., McTaggart, S.J., Johnson, D.W. and Gobe, G.C., 2012. Anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. Cytotherapy, 14(162–172). doi:10.3109/14653249.2011.613927.
18. Guillen, M.I., Platas, J., Perez Del Caz, M.D., Mirabet, V. and Alcaraz, M.J., 2018. Paracrine anti-inflammatory effects of adipose tissue-derived mesenchymal stem cells in human monocytes. Frontiers in Physiology, 9(661). doi:10.3389/fphys.2018.00661.
19. Laporte, C., Tubbs, E., Cristante, J., Gauchez, A.S., Pesenti, S., Lamarche, F., Cottet-Rousselle, C., Garrel, C., Moisan, A. and Moulis, J.M., 2019. Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. Stem Cell Research & Therapy, 10(85). doi:10.1186/s13287-019-1190-4.
20. Stavely, R. and Nurgali, K., 2020. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Translational Medicine, 9(985–1006). doi:10.1002/sctm.19-0446.
21. Liu, Q., Song, S., Song, L., Bi, Y., Zhu, K., Qiao, X., Wang, H., Gao, C., Cai, H. and Ji, G., 2022. Mesenchymal stem cells alleviate aging in vitro and in vivo. Annals of Translational Medicine, 10(1092). doi:10.21037/atm-22-1206.