UNRAVELLING THE BIOCHEMICAL WEB: INSIGHTS INTO PATHOGENS AND RESISTANCE IN LOWER RESPIRATORY INFECTIONS

Main Article Content

Hafiz Zeeshan Sadiq
Muhammad Asim Rana
Ahmed Hossameldin Ahmed Awad
Muhammad Ahmed
Bushra Arif
Ahmed M Abdelbaky
Wael Ghaly Elmasry

Keywords

Bronchoalveolar lavage, Bacterial pathogens, Antimicrobial resistance, Viral infections, Respiratory tract infections

Abstract

Background: Lower respiratory tract infections (LRTIs) are a major cause of morbidity and mortality, particularly in intensive care unit (ICU) patients. Identifying the causative pathogens and understanding antimicrobial resistance (AMR) patterns is critical for optimising treatment and improving patient outcomes.


Objective: This study used bronchoalveolar lavage (BAL) samples in ICU settings to investigate the prevalence of infectious pathogens and antimicrobial resistance in patients with LRTIs.


Methods: BAL samples were collected from ICU patients with LRTIs and analysed for bacterial, viral, and fungal pathogens. Biochemical tests and molecular techniques were employed to identify pathogens and detect antimicrobial resistance genes, including CTX-M, OXA-48-like, and NDM.


Results: The study revealed that Klebsiella pneumoniae, Escherichia coli, and Human Rhinovirus/Enterovirus were the significant causative microorganisms in LRTIs. Fungal pathogens were infrequent in the analysed samples. A high prevalence of antimicrobial resistance genes, including CTX-M, OXA-48-like, and NDM, was detected in most samples, indicating significant multidrug resistance among the bacterial pathogens.


Conclusion: The findings highlight the critical need for antimicrobial stewardship, the use of rapid diagnostic techniques, and the development of targeted antimicrobial therapies to manage LRTIs effectively in ICU patients. Addressing the high prevalence of AMR genes is essential for improving infection control strategies and patient outcomes at the local level.

Abstract 62 | pdf Downloads 15

References

1. GBD 2016 Lower Respiratory Infections Collaborators (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Infectious diseases, 18(11), 1191–1210. https://doi.org/10.1016/S1473-3099(18)30310-4
2. Ramirez, J. A., Wiemken, T. L., Peyrani, P., Arnold, F. W., Kelley, R., Mattingly, W. A., Nakamatsu, R., Pena, S., Guinn, B. E., Furmanek, S. P., Persaud, A. K., Raghuram, A., Fernandez, F., Beavin, L., Bosson, R., Fernandez-Botran, R., Cavallazzi, R., Bordon, J., Valdivieso, C., Schulte, J., … University of Louisville Pneumonia Study Group (2017). Adults Hospitalized With Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 65(11), 1806–1812. https://doi.org/10.1093/cid/cix647
3. Murphy, C. N., Fowler, R., Balada-Llasat, J. M., Carroll, A., Stone, H., Akerele, O., Buchan, B., Windham, S., Hopp, A., Ronen, S., Relich, R. F., Buckner, R., Warren, D. A., Humphries, R., Campeau, S., Huse, H., Chandrasekaran, S., Leber, A., Everhart, K., Harrington, A., … Bourzac, K. M. (2020). Multicenter Evaluation of the BioFire FilmArray Pneumonia/Pneumonia Plus Panel for Detection and Quantification of Lower Respiratory Tract Infection Agents. Journal of clinical microbiology, 58(7), e00128-20. https://doi.org/10.1128/JCM.00128-20
4. Shebl E, Gulick PG. Nosocomial Pneumonia. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535441/
5. Uluç, K., Akkütük Öngel, E., Köylü İlkaya, N., Devran, Ö., Çolakoğlu, Ş. M., & Kutbay Özçelik, H. (2024). Analysis of 332 fiberoptic bronchoscopies performed in a respiratory intensive care unit: a retrospective study. European review for medical and pharmacological sciences, 28(4), 1433–1438. https://doi.org/10.26355/eurrev_202402_35465
6. Cillóniz, C., Ewig, S., Polverino, E., Marcos, M. A., Esquinas, C., Gabarrús, A., Mensa, J., & Torres, A. (2011). Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax, 66(4), 340–346. https://doi.org/10.1136/thx.2010.143982
7. Bush, K., & Bradford, P. A. (2020). Epidemiology of β-Lactamase-Producing Pathogens. Clinical microbiology reviews, 33(2), e00047-19. https://doi.org/10.1128/CMR.00047-19
8. Nordmann, P., Poirel, L., Toleman, M. A., & Walsh, T. R. (2011). Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria?. The Journal of antimicrobial chemotherapy, 66(4), 689–692. https://doi.org/10.1093/jac/dkq520
9. Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrobial agents and chemotherapy, 54(1), 24–38. https://doi.org/10.1128/AAC.01512-08
10. Logan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of infectious diseases, 215(suppl_1), S28–S36. https://doi.org/10.1093/infdis/jiw282
11. Chambers, H. F., & Deleo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature reviews. Microbiology, 7(9), 629–641. https://doi.org/10.1038/nrmicro2200
12. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., … WHO Pathogens Priority List Working Group (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
13. Altay-Kocak, A., Sarzhanova, S., Tapisiz, A., Dizbay, M., Basustaoglu, A., & Bozdayi, G. (2022). Retrospective evaluation of viral respiratory tract infections in a university hospital in Ankara, Turkey (2016-2019). Journal of infection in developing countries, 16(5), 857–863. https://doi.org/10.3855/jidc.14427
14. Tchatchouang, S., Kenmoe, S., Nzouankeu, A., Njankouo-Ripa, M., Penlap, V., Donkeng, V., Pefura-Yone, E. W., Fonkoua, M. C., Eyangoh, S., & Njouom, R. (2023). Viral etiology of lower respiratory tract infections in adults in the pre-COVID-19 pandemic era: A cross-sectional study in a single center experience from Cameroon. Health science reports, 6(5), e1234. https://doi.org/10.1002/hsr2.1234
15. Chiti, B., Seth, R. J., & Madoriya, K. (2023). Prevalence of lower respiratory tract fungal infection at a tertiary care hospital in Central Madhya Pradesh, India: A cross-sectional study. National Journal of Laboratory Medicine, 12(4), MO09-MO12. https://doi.org/10.7860/NJLM/2023/64013.2784
16. Shamim, Shelley; Agarwal, Abinash1; Ghosh, Bijan Kumar; Mitra, Mrinmoy. Fungal pneumonia in intensive care unit: When to suspect and decision to treatment. The Journal of Association of Chest Physicians 3(2):p 41-47, Jul–Dec 2015. | DOI: 10.4103/2320-8775.158837
17. Chakraborti, A., Jaiswal, A., Verma, P. K., & Singhal, R. (2018). A Prospective Study of Fungal Colonization and Invasive Fungal Disease in Long-Term Mechanically Ventilated Patients in a Respiratory Intensive Care Unit. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine, 22(8), 597–601. https://doi.org/10.4103/ijccm.IJCCM_181_18
18. Lawn, S. D., & Zumla, A. I. (2011). Tuberculosis. Lancet (London, England), 378(9785), 57–72. https://doi.org/10.1016/S0140-6736(10)62173-3

Most read articles by the same author(s)