EVALUATION OF PHENOTYPIC METHODS OF BETA-LACTAMASE PRODUCING METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) IN A TERTIARY CARE HOSPITAL

Main Article Content

Nandlal Kumar
Pratima Kumari
Saumya Singh
Devesh Sharma
Rajan Pathak

Keywords

β-lactamase, S. aureus, MRSA, Cloverleaf test, Masuda double disc test

Abstract

ABSTRACT


Background: Methicillin-Resistant Staphylococcus aureus (MRSA) is one of the most common causes of nosocomial and community infections, and the majority of clinical isolates are β-lactam and multidrug-resistant.


Resistance to β-lactam antibiotics is frequently caused by the development of penicillin-binding proteins (PBPs) and β-lactamases. The identification of β-lactamases is critical for selecting the most effective antibiotic treatment.


Objective: To compare various phenotypic methods for the detection of β-lactamase producing Methicillin-Resistant Staphylococcus aureus (MRSA) in a Tertiary Care Hospital.


Material and Methods: A Prospective Hospital study conducted from January 2023 to December 2023 from various clinical specimens that were sent for processing in the Department of Microbiology, United Institute of Medical Sciences, Prayagraj, from patients attending various OPDs and admitted in IPDs.


A total of 1877 patients’ sample, received from various departments were processed. All MRSA isolates were tested for β-lactamase production by using various phenotypic methods like cloverleaf test, Masuda double-disc test, Double disc method and Penicillin disc diffusion method.


Result: Characterization of β-lactamases is important for choosing appropriate antibiotic therapy; therefore 97S. aureus were isolated with 49 MRSA and 48 MSSA. The findings of this study revealed that the Cloverleaf test and Masuda test had high accuracy (100%) compared with other methods tested for the detection of MRSA β-lactamase production.


Conclusion: The study shows that the Cloverleaf and Masuda double-disc were more accurate and superior methods in the detection of β-lactamase producing S. aureus and suggests that these methods can be done as routine tests in the Microbiology Laboratory.

Abstract 182 | Pdf Downloads 89

References

1. Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infection and Drug Resistance, 13, 4713-4738. https://doi.org/10.2147/IDR.S275961
2. Ahmad, I., Malak, H. A., & Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111. https://doi.org/10.1016/j.jgar.2021.01.003
3. Vrancianu, C. O., Gheorghe, I., Dobre, E. G., Barbu, I. C., Cristian, R. E., Popa, M., ... & Chifiriuc, M. C. (2020). Emerging strategies to combat β-lactamase producing ESKAPE pathogens. International Journal of Molecular Sciences, 21(22), 8527. https://doi.org/10.3390/ijms21228527
4. Gurung, R. R., Maharjan, P., & Chhetri, G. G. (2020). Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Science OA. https://doi.org/10.2144/fsoa-2020-0141
5. Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310
6. Motbainor, H., Bereded, F., & Mulu, W. (2020). Multi-drug resistance of bloodstream, urinary tract, and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients at a referral hospital in Ethiopia. BMC Infectious Diseases, 20, 743. https://doi.org/10.1186/s12879-020-05496-4
7. Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107
8. Arnold, B. J., Huang, I. T., & Hanage, W. P. (2022). Horizontal gene transfer and adaptive evolution in bacteria. Nature Reviews Microbiology, 20, 206-218. https://doi.org/10.1038/s41579-021-00674-3
9. Rodríguez-Beltrán, J., DelaFuente, J., Leon-Sampedro, R., MacLean, R. C., & San Millan, A. (2021). Beyond horizontal gene transfer: The role of plasmids in bacterial evolution. Nature Reviews Microbiology, 19(6), 347-359. https://doi.org/10.1038/s41579-021-00524-3
10. Guliy, O. I., Evstigneeva, S. S., & Bunin, V. D. (2021). Bacteria-based electro-optical platform for ampicillin detection in aquatic solutions. Talanta, 222, 121545. https://doi.org/10.1016/j.talanta.2020.121545
11. Caro, Y. S., Van Strate, P., Sartorio, M. E., Camara, M. S., & De Zan, M. M. (2021). Application of the lifecycle approach to the development and validation of a chromatographic method for therapeutic drug monitoring of ceftazidime, meropenem, and piperacillin. Microchemical Journal, 170, 106692. https://doi.org/10.1016/j.microc.2021.106692
12. Sulis, G., Sayood, S., Katukoori, S., Bollam, N., George, I., Yaeger, L. H., ... & Gandra, S. (2022). Exposure to World Health Organization's AWaRe antibiotics and isolation of multidrug resistant bacteria: A systematic review and meta-analysis. Clinical Microbiology and Infection, 28(9), 1193-1202. https://doi.org/10.1016/j.cmi.2022.02.016
13. Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Reviews, 33(2), e00047-19. https://doi.org/10.1128/CMR.00047-19
14. Panchal, V. V., Griffiths, C., Mosaei, H., Bilyk, B., Sutton, J. A., Carnell, O. T., ... & Foster, S. J. (2020). Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathogens, 16(7), e1008672. https://doi.org/10.1371/journal.ppat.1008672
15. Alfei, S., & Schito, A. M. (2022). β-lactam antibiotics and β-lactamase enzymes inhibitors part 2: Our limited resources. Pharmaceuticals, 15(8), 917. https://doi.org/10.3390/ph15080917
16. Schwendener, S., & Perreten, V. (2022). The bla and mec families of β-lactam resistance genes in the genera Macrococcus, Mammaliicoccus, and Staphylococcus: An in-depth analysis with emphasis on Macrococcus. Journal of Antimicrobial Chemotherapy, 77(7), 1796-1827. https://doi.org/10.1093/jac/dkac136
17. Boonsiri, T., Watanabe, S., Tan, X. E., Thitiananpakorn, K., Narimatsu, R., Sasaki, K., ... & Cui, L. (2020). Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Scientific Reports, 10(1), 16907. https://doi.org/10.1038/s41598-020-73673-5
18. Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular mechanisms of drug resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23(15), 8088. https://doi.org/10.3390/ijms23158088
19. Deekshit, V. K., & Srikumar, S. (2022). 'To be or not to be'—The dilemma of 'silent' antimicrobial resistance genes in bacteria. Journal of Applied Microbiology, 133(4), 2418-2431. https://doi.org/10.1111/jam.15734
20. Gupta, V., Singh, M., Datta, P., Goel, A., Singh, S., Prasad, K., & Chander, J. (2020). Detection of various beta-Lactamases in Escherichia coli and Klebsiella sp.: A study from Tertiary Care Centre of North India. Indian Journal of Medical Microbiology, 38(3-4), 390-396. https://doi.org/10.4103/ijmm.IJMM_20_35
21. Dirar, M., Bilal, N., Ibrahim, M. E., & Hamid, M. (2020). Resistance patterns and phenotypic detection of β-lactamase enzymes among Enterobacteriaceae isolates from referral hospitals in Khartoum State, Sudan. Cureus, 12(4), e7511. https://doi.org/10.7759/cureus.7511
22. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. https://doi.org/10.1093/ajcp/45.4.493.