ANTIRETROVIRAL DRUG LOADED GOLD NANOPARTICLES RECENT TRENDS AND ITS APPLICATIONS

Main Article Content

Mrs. V Nagalakshmi Ponnada
Dr. P. Shailaja
Dr. G. Girija Sankar

Keywords

.

Abstract

Gold nanoparticles provide an excellent material for study the most stable, non-toxic and easy to synthesize nanoparticles and it exhibits various interesting properties such as aggregation type and quantum size effect. The optical behavior of gold nanoparticles depends on surface plasmon resonance (SPR). wide area from visible to infrared area. The spectrum is determined by mass oscillations transfer electrons. The range of the spectrum depends different properties of gold nanoparticles, size and a method has been developed to synthesize this material that can be changed by increased use chemical functional groups are innumerable. Many new sensations and special studies based on gold nanoconjugates. Gold nanoparticles have emerged as practical candidates for the delivery of various cargo carriers to the target place. This is a small carrier drug molecules including drugs for large biomolecules such as DNA, RNA and protein. Some drug molecules do not requires modification of the gold nanoparticle monolayer can be directly connected to gold for delivery physical absorption with ions or nanoparticles covalent bonds. To be sent by others charge carriers require functionality such as gold nanoparticles PEG lyation, peptide and amino acid conjugation or work with oligonucleotides. In addition, another prerequisite for effective delivery of therapeutic agents is their release. Various internal stimuli (glutathione, pH, and enzymes) and external stimuli (light, etc.) as investigated for effective release gold nanoparticles. Because of the abundance of information available and we choose the renewable level data is summarized over the past few years to illustrate this include the most promising programs Gold nanoparticles in drug delivery.

Abstract 17 | PDF Downloads 3

References

1. Cai W, Gao T, Hao Hong JS. Applications of gold nanoparticles in nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32. doi:10.2147/NSA.S3788.
2. Mokhatab S, Fresky MA, Islam MR. Applications of nanotechnology in oil and gas E&P. J Pet Technol. 2006;58(04):48–51. doi:10.2118/ 0406-0048-jpt .
3. Mu L, Sprando RL. Application of nanotechnology in cosmetics. Pharm Res. 2010;27(8):1746–1749. doi:10.1007/s11095-010-0139-1.
4. Inès Hammami Review Gold nanoparticles: Synthesis properties and applications, Journal of King Saud University – Science, Journal of King Saud University – Science 33 (2021) 101560.
5. Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263:3. doi:10.1088/1757-899X/263/3/032019.
6. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104 (1):293–346.
7. Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol. 2004;31 (SUPPL. 13):196–205. doi:10.1053/j.seminoncol.2004.08.009.
8. Jurgons R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter. 2006;18(38):38. doi:10.1088/ 0953-8984/18/38/S24.
9. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282. doi:10.1039/c1cs15166e.
10. Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res. 2006;67(1):47–54. doi:10.1002/ddr.20066.
11. Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv J Deliv Target Ther Agents. 2004;11(3):169–183. doi:10.1080/ 10717540490433895.
12. Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713–722. doi:10.1021/ mp060132k .
13. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials. 2009;30(30):6065–6075. doi:10.1016/j.biomaterials.2009.07.048 .
14. Zarabi MF, Farhangi A, Mazdeh SK, et al. Synthesis of gold nanoparticles coated with aspartic acid and their conjugation with FVIII protein and FVIII antibody. Indian J Clin Biochem. 2014;29(2):154–160. doi:10.1007/s12291-013-0323-2.
15. Kalimuthu K, Lubin BC, Bazylevich A, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnology. 2018.
16. Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev. 1999;99(7):1849–1862. doi:10.1021/cr970071p .
17. Park C, Youn H, Kim H, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem. 2009;19(16):2310–2315. doi:10.1039/b816209.
18. Joshi P, Chakraborti S, Ramirez-Vick JE, et al. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces. 2012;95:195–200. doi:10.1016/j.colsurfb.2012.02.039.
19. Schwert GW, Eisenberg MA. The kinetics of the amidase and esterase activities of trypsin. J Biol Chem. 1949;179(5):665–72.
20. Han K, Zhu JY, Wang SB, Li ZH, Cheng SX, Zhang XZ. Tumor targeted gold nanoparticles for FRET-based tumor imaging and light responsive on-demand drug release. J Mater Chem B. 2015;3(41):8065–8069. doi:10.1039/c5tb01659b.
21. Tangeysh B, Tibbetts KM, Odhner JH, Wayland BB, Levis RJ. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]. J Phys Chem C. 2013;117(36):18719–18727. doi:10.1021/jp4056494 .
22. Birtcher RC, Kirk MA, Furuya K, Lumpkin GR. In situ transmission electron microscopy investigation of radiation effects. J Mater Res. 2005;20(7):1654–1683. doi:10.1557/ JMR.2005.0242.
23. Sakamoto M, Fujistuka M, Majima T. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C. 2009;10(1):33–56. doi:10.1016/j. jphotochemrev.2008.11.002 24. Zhou Y, Wang CY, Zhu YR, Chen ZY. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater. 1999;11(9):2310–2312. doi:10.1021/cm990315.
24. Krinke TJ, Deppert K, Magnusson MH, Schmidt F, Fissan H. Microscopic aspects of the deposition of nanoparticles from the gas phase. J Aerosol Sci. 2002;33(10):1341–1359. doi:10.1016/ S0021-8502(02)00074-5.
25. Turkevich J, Cooper PHJ. A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;55(c):55–75.
26. Wangoo N, Bhasin KK, Mehta SK, Suri CR. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci. 2008;323(2):247–254.
27. Niidome Y, Nishioka K, Kawasaki H, Yamada S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. ChemComm. 2003;18(18):2376–2377.
28. Pal A, Esumi K, Pal T. Preparation of nanosized gold particles in a biopolymer using UV photoactivation. J Colloid Interface Sci. 2005;288(2):396–401. doi:10.1016/j.jcis.2005.03.048.
29. Kumar S, Gandhi KS, Kumar R. Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res. 2007;46 (10):3128–3136.
30. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241 (105):20–22.
31. Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf a Physicochem Eng Asp. 1999;149(1–3):193–199.
32. Watson KJ, Zhu J, Nguyen ST, Mirkin C. Hybrid nanoparticles with block copolymer shell structures. J Am Chem Soc. 1998;121 (2):462–463.
33. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun. 1994;7:5–7.
34. Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993;9 (12):3408–3413.
35. Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc. 1857;147:145–181.
36. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126(28):9–10. 38. Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J. Shape controlled growth of gold nanoparticles by a solution synthesis. ChemComm. 2005;1(33):4181.
37. Hinman JG, Stork AJ, Varnell JA, Gewirth AA, Murphy CJ. Seed mediated growth of gold nanorods: towards nanorod matryoshkas 1. Introduction: a brief review of anisotropy on the nanoscale. Faraday Discuss. 2016;191:9–3340.
38. Sahu P, Prasad BLV. Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to ostwald ripening? Langmuir. 2014;30 (34):10143–10150.
39. Kundu S, Peng L, Liang H. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg Chem. 2008;47(14):6344–6352.
40. Lee JH, Choi SUS, Jang SP, Lee SY. Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath. Nanoscale Res Lett. 2012;7(1):1–7.
41. Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM. Synthesis of precision gold nanoparticles using turkevich method. KONA Powder Part J. 2020;37:224–232.
42. Herizchi R, Abbasi E, Milani M, Akbarzadeh A. Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(2):596–602.
43. Ward CJ, Tronndorf R, Eustes AS, Auad ML, Davis EW. Seedmediated growth of gold nanorods: limits of length to diameter ratio control. J Nanomater. 2014;2014:1–7.
44. Sidhaye DS, Prasad BLV. Many manifestations of digestive ripening: monodispersity, superlattices and nanomachining. New J Chem. 2011;35(4):755–763.
45. Shimpi JR, Sidhaye DS, Prasad BLV. Digestive ripening: a fine chemical machining process on the nanoscale. Langmuir. 2017;33 (38):9491–9507.
46. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4 (8):858–864.
47. Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Crit Rev Biotechnol. 2009;29(4):279–306.
48. Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, bacillus cereus and fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol. 2017;29:86–93.
49. Singh PK, Kundu S. Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India Sect B Biol Sci. 2014;84 (2):331–336.
50. Sharma N, Pinnaka AK, Raje M, Fnu A, Bhattacharyya MS, Choudhury AR. Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Fact. 2012;11(1):1–6.
51. 53. Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. Liang XJ, ed. J Nanomater. 2011;2011:270974.
52. Mewada A, Oza G, Pandey S, Sharon M, Ambernath W. Extracellular biosynthesis of gold nanoparticles using pseudomonas denitiricans and comprehending its stability. J Microbiol Biotechnol Res. 2012;2(4):493–499.
53. Shah R, Oza G, Pandey S, Sharon M. Biogenic fabrication of gold nanoparticles using halomonas salina. J Microbiol Biotechnol Res. 2012;2(4):485–492.
54. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp. Langmuir. 2003;19(8):3550–3553.
55. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S. Microbial deposition of gold nanoparticles by the metal-reducing bacterium shewanella algae. Electrochim Acta. 2007;53(1):186–192.
56. Zhang X, He X, Wang K, Yang X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol. 2011;7(2):245–254
57. Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res Part A. 2018;106 (5):1400–1412.
58. Ovais M, Khalil AT, Islam NU, et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol. 2018;102 (16):6799–6814.
59. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus neurospora crassa. Colloids Surf B Biointerfaces. 2011;83(1):42–48.
60. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast yarrowia lipolytica NCIM 3589. Mater Lett. 2009;
61. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. Extracellular biosynthesis of bimetallic au–ag alloy nanoparticles. Small. 2005;1(5):517–520.
62. Mukherjee P, Ahmad A, Mandal D, et al. Bioreduction of AuCl (4)(-) ions by the fungus, verticillium sp. and surface trapping of the gold nanoparticles formed D.M. and S.S. thank the council of scientific and industrial research (CSIR), Government of India, for financial assistance. Angew Chem Int Ed Engl. 2001;40(19).
63. Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using phanerochaete chrysosporium. Adv Chem Eng Sci. 2011;01(03):154–162.
64. Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275–300.
65. Zadernowski R, Czaplicki S, Naczk M. Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem. 2009;112 (3):685–689.
66. Lee KX, Shameli K, Miyake M, et al. Gold nanoparticles biosynthesis: a simple route for control size using waste peel extract. IEEE Trans Nanotechnol. 2017;16(6):954–957
67. Ganesan R, Gurumallesh Prabu H. Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab J Chem. 2015.
68. Ganesh Kumar V, Dinesh Gokavarapu S, Rajeswari A, et al. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf B Biointerfaces. 2011;87(1):159–163.
69. Karuppiah C, Palanisamy S, Chen S-M, Emmanuel R, Muthupandi K, Prakash P. Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic. RSC Adv. 2015;5(21):16284–16291.
70. Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A. Green synthesis of gold nanoparticles from leaf extract of terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crops Prod. 2013;50:737–742.
71. Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem. 2012;5(4):431–437.
72. Philip D. Rapid green synthesis of spherical gold nanoparticles using mangifera indica leaf. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77(4):807–810.
73. Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF. Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett. 2016;166:110–112.
74. Opris R, Tatomir C, Olteanu D, et al. The effect of Sambucus nigra L. extract and photosynthesized gold nanoparticles on diabetic rats. Colloids Surf B Biointerfaces. 2017;150:192–200.
75. Lee S-E, Lee KD, An M, Lee K-D. Green synthesis of silver and gold nanoparticles using lonicera japonica flower extract. Bull Korean Chem Soc. 2012;33(8):2609–2612.
76. Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem. 2015;21:1105–1111
77. Ghoreishi SM, Behpour M, Khayatkashani M. Green synthesis of silver and gold nanoparticles using rosa damascena and its primary application in electrochemistry. Physica E Low Dimens Syst Nanostruct. 2011;44(1):97–104.
78. Noruzi M, Zare D, Khoshnevisan K, Davoodi D. Rapid green synthesis of gold nanoparticles using rosa hybrida petal extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(5):1461–1465.
79. Vijayakumar S, Vaseeharan B, Malaikozhundan B, et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog. 2017;102:173–183.
80. Yang N, WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014;134:67–70.
81. Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng. 2014;2(7):1717–1723.
82. Lv J, Yi Y, Wu G, Liu W. Gold nanotriangles: green synthesis and PDT & PTT effect. Mater Lett. 2017;187:148–150.
83. Velmurugan P, Anbalagan K, Manosathyadevan M, et al. Green synthesis of silver and gold nanoparticles using zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng. 2014;37 (10):1935–1943.
84. Fazal S, Jayasree A, Sasidharan S, Koyakutty M, S V N, Menon D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces. 2014;6(11):8080–8089.
85. Yuan C-G, Huo C, Yu S, Gui B. Biosynthesis of gold nanoparticles using capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E Low Dimens Syst Nanostruct. 2017;85:19–26.
86. Karthika V, Arumugam A, Gopinath K, et al. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J Photochem Photobiol B Biol. 2017;167:189–199.
87. Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem. 2019;12 (8):2310–2319.
88. Cabrera FC, Mohan H, Dos Santos RJ, et al. Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. Gu HC, ed. J Nanomater. 2013;2013:710902.
89. Rajan A, Vilas V, Philip D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq. 2015;212:331–339.
90. Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol. 2012;113:132–135.
91. Naveena BE, Prakash S. Biological synthesis of gold nanoparticles using marine algae gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res. 2013;6(2):179–182.