Main Article Content

Ayesha Zafar
Saffora Riaz
Farkhanda Manzoor
Mushtaq Hussain Lashari


Phylogenetics, P, americana, B. germanica, Pakistan


The present study is the first one from Pakistan which has been devised with an objective to unearth population dynamics and molecular phylogeny of German (B. germanica) and American (P. americana) cockroaches using mitochondrial cytochrome oxidase genes subunit I and II (COI and COII). Furthermore, it also presents a comparative analysis of biochemical variability within these two species. Cockroaches (n=1500) were captured from various residential buildings and population dynamics was ascertained through morphologic identification. The conventional PCR was used for COI and COII gene analysis in both species. Results revealed that from a total of 1500 adult and nymph cockroaches captured, significantly (P≤0.05) higher (810, 54%) population was of the P. americana species whereas 690 (46%) were of B. germanica species. Adults were significantly (P≤0.05) dominant both for B. germanica (437, 54%) and P. americana (351, 51%) species. Similarly, females had significantly (P≤0.05) dominant population (945, 63%) as compared to male cockroaches (555. 37%). The PCR products of the isolates of both species in the present study revealed 710bp DNA for COI and 750bp DNA for COII in both species. All the studied biochemical attributes (total protein, total glucose, alanine transaminase and aspartate transaminase) were significantly (P≤0.05) higher for B. germanica as compared to P. americana. In conclusion, the B. germanica cockroaches have a dominant population as compared to the P. americana in Pakistan. Furthermore, the phylogenetic results on cockroaches in our study though showed diversity in isolates but are suggestive of their polyphyletic nature. The biochemical analytes in these cockroach species can be utilized as reference values. Future research directions need a detailed population dynamics of Pakistan in relation to genetic variability.

Abstract 56 | pdf Downloads 26


1. Abd El-Raheem, A., Eldafrawy, B. 2016. Efficacy of silver nanoparticles against German cockroach Blattella germanica (L.)(Dictyoptera: Blattellidae). Acad. J. Entomol. 9, 74-80.
2. Arif, S., Taj, M. K., Kamran, K., Iqbal, A., Taj, I., Mohammad, G., Ahmed, A. 2017. Household cockroaches of Quetta city as reservoir for infectious pathogenic bacteria. J. Entomol. Zool. Stud. 5, 649-653.
3. Booth, W., Santangelo, R. G., Vargo, E. L., Mukha, D. V., and Schal, C. 2011. Population genetic structure in German cockroaches (Blattella germanica): differentiated islands in an agricultural landscape. J. Heredity 102, 175-183.
4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Bioch. 72, 248-254.
5. Cevahir, F., Düzlü, Ö., Atelge, M., Yildirim, A. 2023. Phylogenetic Characterization of Cochroaches (Insecta: Blattaria) in Türkiye and Determination of their Vector Potential for Medically Important Parasites. Ankara Üni. Vet. Fak. Derg. 1-10.
6. Cheng, X.-F., Zhang, L.-P., Yu, D.-N., Storey, K. B., Zhang, J.-Y. 2016. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 586, 115-122.
7. Djernaes, M., KLASS, K. D., Picker, M. D., Damgaard, J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out‐group sampling. Syst. Entomol. 37, 65-83.
8. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356.
9. Ejimadu, L., Goselle, O., Ahmadu, Y., James-Rugu, N. 2015. Specialization of periplaneta americana (american cockroach) and blattella germanica (german cockroach) towards intestinal parasites: a public health concern. J. Pharm. Biol. Sci. 6, 23-32.
10. Fan, X., Wang, C., Bunker, D. 2022. Population structure of German cockroaches (Blattodea: Ectobiidae) in an urban environment based on single nucleotide polymorphisms. J. Med. Entomol. 59(4), 1319-1327.
11. Fotedar, R., Shriniwas, U. B., Verma, A. 1991. Cockroaches (Blattella germanica) as carriers of microorganisms of medical importance in hospitals. Epidemiol. Infect. 107, 181-187.
12. Gilbert, J. R., Vance, J. M. 1998. Isolation of genomic DNA from mammalian cells. Curr. Protoc. Hum. Gen. 19, A. 3B. 1-A. 3B. 6.
13. Harwood, R. F., James, M. T. 1979. Entomology in human and animal health: Macmillan Publishing Co. Inc. New York; Baillière Tindall, 35 Red Lion
14. Hashemi-Aghdam, S. S., Rafie, G., Akbari, S., Oshaghi, M. A. 2017. Utility of mtDNA-COI barcode region for phylogenetic relationship and diagnosis of five common pest cockroaches. J. Arthropod-Borne Dis. 112, 182.
15. He, M., Ma, Y.-F., Guo, H., Liu, X.-Z., Long, G.-J., Wang, Q., He, P. 2022. Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 114, 110310.
16. Inward, D., Beccaloni, G., Eggleton, P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3, 331-335.
17. Kutrup, B. 2003. Cockroach infestation in some hospitals in Trabzon, Turkey. Turk. J. Zool. 27, 73-77.
18. Legendre, F., Nel, A., Svenson, G. J., Robillard, T., Pellens, R., Grandcolas, P. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10, e0130127.
19. Liu, J., Yuan, Y., Feng, L., Lin, C., Ye, C., Liu, J., Liu, H. 2024. Intestinal pathogens detected in cockroach species within different food-related environment in Pudong, China. Sci. Rep. 141, 1947.
20. Maekawa, K., Matsumoto, T. 2000. Molecular phylogeny of cockroaches (Blattaria) based on mitochondrial COII gene sequences. Syst. Entomol. 254, 511-519.
21. Memona, H., Manzoor, F., Anjum, A. A. 2014. Cockroaches (Periplaneta americana L. and Blattella germanica) as potential vectors of nosocomial infections in hospitals of Lahore, Pakistan. Pak. Biol. 60, 295-297.
22. Michitsch, J., Steele, J. E. 2008. Carbohydrate and lipid metabolism in cockroach (Periplaneta americana) fat body are both activated by low and similar concentrations of Peram-AKH II. Peptides 29, 226-234.
23. Murienne, J., Pellens, R., Budinoff, R., Wheeler, W., Grandcolas, P. 2008. Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. testing competing hypotheses of diversification. Cladistics 24, 802-812.
24. Naeem, A., Jaleel, W., Saeed, Q., Zaka, S. M., Saeed, S., Naqqash, M. N., Ayub, W. B. 2014. Life style of people and surveillance of management related to cockroaches in Southern Punjab, Pakistan. Türk. Tarım Doğa. Bilim. Derg. 1, 227-233.
25. Naqqash, M. N., Saeed, Q., Saeed, S., Jaleel, W., Zaka, S. M., Faheem, M., Rehman, S. 2014. A cross sectional survey of community awareness about typhoid and its major vector cockroach in Southern Punjab, Pakistan. Middle-East J. Sci. Res. 21, 602-608.
26. Oguri, E., Steele, J. E. 2003. Lipid metabolism in the cockroach, Periplaneta americana, is activated by the hypertrehalosemic peptide, HTH-I. Peptides 24, 1545-1551.
27. Rasheed, N., Shahzad, U., Panhwar, W., Saddam, B., Rasheed, Z., Ahmed, Z., Khan, H. 2024. Folklores to facts: Human Psychology toward Insects in Punjab. Pak. J. WIldlife Ecol. 8, 15-26.
28. Şeyda, B., Pektaş, A. N. 2023. DNA barcoding of commercial cockroaches in Turkey. Cumhur. Sci. J. 44(1), 28-35.
29. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651-701.
30. Smith, J. 1994. Determining hemolymph volume of the cockroach. Paper presented at the Tested Studies for Laboratory Teaching, Proceedings of the 15th Workshop/Conference of the Association for Biology Laboratory Education, Atlanta, GA, USA.
31. Tang, Q., Bourguignon, T., Willenmse, L., De Coninck, E., Evans, T. 2019. Global spread of the German cockroach, Blattella germanica. Biol. Inv. 21, 693-707.
32. Tatfeng, Y., Usuanlele, M., Orukpe, A., Digban, A., Okodua, M., Oviasogie, F., Turay, A. 2005. Mechanical transmission of pathogenic organisms: the role of cockroaches. J. Vector Borne Dis. 42, 129.
33. Xiao, B., Chen, A.-H., Zhang, Y.-Y., Jiang, G.-F., Hu, C.-C., Zhu, C.-D. 2012. Complete mitochondrial genomes of two cockroaches, Blattella germanica and Periplaneta americana, and the phylogenetic position of termites. Curr.Gen. 58, 65-77.
34. Yue, Q., Wu, K., Qiu, D., Hu, J., Liu, D., Wei, X., Cook, C. E. 2014. A formal re-description of the cockroach Hebardina concinna anchored on DNA barcodes confirms wing polymorphism and identifies morphological characters for field identification. PLoS One 9, e106789.
35. Zhang, Y.-y., Xuan, W.-j., Zhao, J.-l., Zhu, C.-d., Jiang, G.-f. 2010. The complete mitochondrial genome of the cockroach Eupolyphaga sinensis (Blattaria: Polyphagidae) and the phylogenetic relationships within the Dictyoptera. Mol. Biol. Rep. 37, 3509-3516.
36. Zhu, S., Liu, Y., Liao, M., Yang, Y., Bai, Y., Li, N., Chen, N. 2021. Evaluation of reference genes for transcriptional profiling in two cockroach models. Genes 12, 1880.