A shortened treatment with rosemary tea (rosmarinus officinalis) instead of glucose in patients with diabetes mellitus type 2 (TSD)

Main Article Content

Sol María Quirarte-Báez
Ana Lourdes Zamora-Perez
Claudia Araceli Reyes-Estrada
Rosalinda Gutiérrez-Hernández
Martha Sosa-Macías
Carlos Galaviz-Hernández
Gloria Guillermina Guerrero Manríquez
Blanca Patricia Lazalde-Ramos


diabetes mellitus, hypoglycemia, insulin resistance, oxidative stress, Rosmarinus officinalis



Rosemary leaves powder has been reported to reduce in a dose-dependent manner, glucose levels, lipid profile and lipid peroxidation in humans. However, patients should ingest high doses of powder contained in capsules. This formulation constitutes the intake of 10 capsules per day, so the active metabolite must first, be released and then absorbed (for which, rosemary leaf powder must be mixed with gastric juice).


Evaluate whether a shortened dose and time of treatment as well as the pharmaceutical presentation in rosemary tea (Rosmarinus officinalis) instead of powder have a therapeutic effect in the treatment of T2D.

The complementary therapy with Rosemary tea (2g/1 litre of water per day) were evaluate on resistance to insulin, oxidative stress, biochemical parameters and anthropometric measurements in forty patients T2D under treatment with metformin and/or glibenclamide afther giving your authorization through informed consent.


The data indicated that Rosemary tea intake after 90 days, statistically decreased (p < 0.05) anthropometric parameters like the body mass index and waist-hip ratio. Remarkably, this treatment decreased the percentages of glycated hemoglobin, insulin resistance, and the pancreatic β-cell function and lastly, a significant difference in lipid peroxide levels was found.


These data show that shortening time and dose, as well as changing the formulation of the Rosemary plant constitutes a promising treatment for drug-resistant T2D patients.

Abstract 1044 | PDF Downloads 346 HTML Downloads 21 XML Downloads 5


1. Federación Internacional de Diabetes. Atlas de la diabetes de la FID (6th edn.). Ginebra: FID; 2001, p. 160.

2. Aguilar-Salinas CA, Rojas R, Gómez-Pérez FJ, et al. Prevalence and characteristics of early-onset type 2 diabetes in Mexico. Am J Med 2002;113:569–74.

3. World Health Organitazion Ginebra. World dia-betes report. WHO: Ginebra; 2016.

4. ENSANUT 2012. Encuesta Nacional de Salud y Nutrición 2012. https://ensanut.insp.mx/

5. Domínguez-Alonso E, Seuc A, Díaz O, Aldana D. La carga de la diabetes en Cuba, período 1990– 2005. Rev Cubana Endocrinol 2008;22:23–8.

6. Sikorski C, Luppa M, Kaiser M, et al. The stigma of obesity in the general public and its implica-tions for public health-a systematic review. BMC Public Health 2011;11:664–1.

7. Dávila-Torres J, González-Izquierdo JJ, Barrera-Cruz A. Panorama de la obesidad en México. Rev Med Inst Mex Seguro Soc 2015;53:240–9.

8. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 2012;256:205–12.

9. Yeh GY, Eisenberg DM. Kaptchuk TJ, et al. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003;26:1277–94.

10. Dodda D, V Ciddi. Plants used in the management of diabetic complications. Indian J Pharm Sci 2014;76:97–106.

11. Almela L, Sánchez-Muñoz B, Fernández-López JA, et al. Liquid chromatographic- mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J Chromatogr A 2006;1120(1–2):221–9.

12. Tschinggerl C, Bucar F. Investigation of the volatile faction of Rosemary infusion extracts. Sci Pharm 2010;1:483–92.

13. Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn Schmiedebergs Arch Pharmacol 2016;389:931–49.

14. Lipina C, Hundal HS. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 2014;26:2343–9.

15. Bower AM, Real Hernandez LM, Berhow MA, et al. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J Agric Food Chem 2014;62:6147–58.

16. Bakirel T, Bakirel U, Keleş OU, et al. In vivo assessment of antidiabetic and antioxidant activities of Rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 2008;116:64–73.

17. Ramadan KS, Khalil OA, Danial EN, et al. Hypoglycemic and hepatoprotective activity of Rosmarinus officinalis extract in diabetic rats. J Physiol Biochem 2013;69:779–83.

18. Labban L, Mustafa US, Ibrahim YM. The effects of Rosemary (Rosmarinus officinalis) leaves powder on glucose level, lipid profile and lipid peroxidation. Inte J Clin Med 2014;5:207–304.

19. Al Jamal A. Effect of Rosemary (Rosmarinus offi-cinalis) on lipid profiles and blood glucose in human diabetic patients (type-2). Afr J Biochem Res 2014;8:147–50.

20. Yagi K. Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 1998;108:101–6.

21. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.

22. Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179–83.

23. Rau O, Wurglics M, Paulke A, et al. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs Rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med 2006;72:881–7.

24. Tu Z, Moss-Pierce T, Ford P, et al. Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem 2013;61:2803–10.

25. Ninomiya K, Matsuda H, Shimoda H, et al. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bio Org Med Chem Lett 2004;14:1943–6.

26. McCue PP, Shetty K. Inhibitory effects of rosma-rinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 2004;13:101–6.

27. Koga K, Shibata H, Yoshino K, et al. Effects of 50% ethanol extract from Rosemary (Rosmarinus officinalis) on α-glucosidase inhibitory activity and the elevation of plasma glucose level in rats, and its active compound. J Food Sci 2006;71:S507–12.

28. Wang T, Takikawa Y, Satoh T, et al. Carnosic acid prevents obesity and hepatic steatosis in ob/ob mice. Hepat Res 2011;41:87–92.

29. Yun YS, Noda S, Shigemori G, et al. Phenolic diterpenes from Rosemary suppress cAMP responsive-ness of gluconeogenic gene promoters. Phytother Res 2013;27:906–10.

30. Stefanon B, Pomari E, Colitti M. Effects of Rosmarinus officinalis extract on human primary omental preadipocytes and adipocytes. Exp Biol Med 2015;240:884–95.

31. Naidu KA, Thippeswamy NB. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem 2002;229:19–23.

32. Devi R, Sharma DK. Hypolipidemic effect of different extracts of Clerodendron colebrookia-num Walp in normal and high-fat diet fed rats. J Ethnopharmacol 2004;90:63–8.

33. Alfonso MS, de O Silva AM, Carvalho EB, et al. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr Metab 2013;10: 19–24.

34. Romo-Vaquero M, Yáñez-Gascón MJ, García Villalba R, et al. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a Rosemary extract rich in carnosic acid. PLoS One 2012;7:e39773.

35. Bustanji Y, Issa A, Mohammad M, et al. Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J Med Plants Res 2010;4:2235–42.

36. León-Pedroza JI, González-Tapia LA, Del Olmo-Gil E, et al. Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice. Cir Cir 2015;83:543–51.

37. Singh T, Singh S, Bhullar GS. The effect of sulphonylurea therapy on serum total cholesterol and high-density lipoprotein cholesterol. J Indian Med Assoc 1992;90(10):259–61.

38. Nobusawa A, Taniguchi T, Fujioka Y, et al. Glibenclamide inhibits accumulation of cholesteryl ester in THP-1 human macrophages. J Cardiovasc Pharmacol 2000;36(1):101–8.

Most read articles by the same author(s)