Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza


nickel, microalgae, removal, suspension, immobilization


The aim of the present study was to evaluate the Ni2+ removal capacity of Chlorella vulgaris in solution and immobilized on Luffa cylindrical for 25 days in phyco-reactors and subsequently subjected to concentrations of 0.5, 1.0, 1.5 and 2.0 mg/L NiCl2 for 24 h in constant light. The immobilized microalgae showed high percentages of 98.0 % Ni2+ removal. With respect to the concentrations of nickel, Chlorella vulgaris showed a higher removal at a higher concentration of 2.0 mg/L with 95.8 % removal for nickel, which is possibly due to the fact that the cells of Chlorella vulgaris have a high affinity for divalent Ni2+ metals that interact with the functional groups present in the membrane of the microalgae and act as binding and neutralization points for the toxicity of these pollutants. Therefore, phyco-remediation using immobilized Chlorella vulgaris is a technique with a high capacity for remediation of Ni2+ contaminated waters.

Abstract 30 | pdf Downloads 18


1. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108(1-2), 85–94.
2. Arief, V.O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean. 36(12), 937-962.
3. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108(1-2), 85–94.
4. Becker, D.S., & Bigham, G.N. (1995). Distribution of mercury in the aquatic food web of Onondaga Lake, New York. Water Air Soil Pollut. 80(1-4), 563-571.
5. Benítez, S., Pérez, A. & Vitola, D. (2018). Removal and recovery of mercury in vitro using immobilized live biomass of Chlorella sp. Indian Journal of Science and Technology, 11(45), 1-8.
6. Chavez, I. (2016). Analytical methodologies currently used for the determination of mercury in fish muscle. revista pensamiento actual. 16(26), 113-122.
7. de-Bashan, L.E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101(6), 1611-1627.
8. García, B.A., Le Faucheur, F.S., Monperrus, M., Amouroux, D., & Slaveykova, V.I. (2014). Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environ. Pollut. 192, 212-215.
9. Gutiérrez-Benítez, O., González-Álvarez, J., Freire-Leira, M.S., Rodríguez-Rico, I.L., y Moreira-González, A.R. (2014). Potencialidades de un biosorbente algal para la remoción de metales pesados. Tecnología Química. 34(1), 82-93.
10. Hernández, Y., Pérez, A. & Vitola, D. (2018). Biosorption of mercury and nickel in vitro by microalga Chlorella sp. in solution and immobilized in dry fruit of squash (Luffa cylindrica). Indian Journal of Science and Technology, 11(41), 1-8
11. Infante, C., Angulo, E., Zárate, A., Florez, J.Z., Barrios, F., & Zapata, C. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av. cien. ing. 3(2), 159-164.
12. Kaplan, D. (2013). Absorption and adsorption of heavy metals by microalgae. Richmond and Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Blackwell Publishing. p. 439-447.
13. Nabizadeh, R., Naddafi, K., Mesdaghinia, A., & Nafez, A.H. (2008). Feasibility study of organic matter and ammonium removal using loofa sponge as a supporting medium in an aerated submerged fixed-film reactor (ASFFR). Electron J. Biotechnol. 11(4), 1-9.
14. Sánchez, E., Garza, M., Almaguer, V., Sáenz, I., & Liñán, A. (2008). Estudio cinético e isotermas de adsorción de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Ciencia UNAL. 11(2), 168-176.
15. Vitola, R.D.C., Pérez, C.A.F., & Oviedo, G.Y. (2018). Biodegradation activity of crude oil by Chlorella sp. under mixotrophic conditions. Indian J. Sci. Technol. 11(29), 1-8.
16. Vitola, D. Pérez, A., Montes, D. (2022). Utilización de microalgas como alternativa para la remoción de metales pesados. Revista de Investigación Agraria y Ambiental, 13(1), 195 – 203. DOI:
17. Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553-1563.