EXPLORING THE INFLUENCE OF PHARMACOGENETIC VARIABILITY ON WARFARIN TREATMENT OUTCOMES
Main Article Content
Keywords
Warfarin, pharmacogenomics, personalized medicine, genetic variants, pharmacogenetic algorithms
Abstract
Pharmacogenetics holds much promise for influence on warfarin dose initiation. It is a science that is still in its relative infancy but has already achieved success in this area. To appreciate fully whether pharmacogenetics can provide the long-sought solution, it is necessary to understand the genetic and environmental factors that determine warfarin dose requirement and how they are involved in dose prediction. (Al-Eitan et al.2021)
The degree of interindividual variability in warfarin dose requirement is considerably higher than for most other drugs. If clinical or genetic information could be used to predict the correct warfarin dose, then each individual could potentially be given a much more appropriate starting dose when warfarin treatment is initiated.( Wadelius M, et al. 2007)
Although it is now more than half a century since warfarin was first used clinically, the problem of how to initiate it safely and efficaciously still poses a difficult challenge. Over-anticoagulation can lead to serious or fatal bleeding events; under-anticoagulation can lead to thromboembolism. Both events are most keenly avoided. If warfarin dose could be predicted and the desired therapeutic range achieved early in treatment, treatment decisions would be much easier for both doctor and patient. (Ansell J, Hirsh J, Hylek E, et al. 2008).
References
2. Ansell J, Hirsh J, Hylek E, et al. (2008). Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 133(6 Suppl), 160S-198S.
3. Hylek EM, Evans-Molina C, Shea C, et al. (2007). Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation, 115(21), 2689-2696
4. Al-Eitan, L. N., Almasri, A. Y., Alnaamneh, A. H., Aman, H. A., Alrabadi, N. N., Khasawneh, R. H., & Alghamdi, M. A. (2021). Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan. International journal of medical sciences, 18(3), 826. nih.gov
5. Wadelius M, Chen LY, Downes K, et al. (2005). Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics Journal, 5(4), 262-270.
6. Fang, M. C., Go, A. S., Prasad, P. A., Hsu, J. W., Fan, D., Portugal, C., ... & Reynolds, K. (2021). Anticoagulant treatment satisfaction with warfarin and direct oral anticoagulants for venous thromboembolism. Journal of Thrombosis and Thrombolysis, 1-9. springer.com
7. Fahmi, A. M., Elewa, H., & El Jilany, I. (2022). Warfarin dosing strategies evolution and its progress in the era of precision medicine, a narrative review. International Journal of Clinical Pharmacy. springer.com
8. Dawood, S. (2020). Pharmacology, Pharmacogenetics, and Pharmacoepidemiology: Three P's of Individualized Therapy. Pharmacogenetics of Breast Cancer. researchgate.net
9. Tang, P. F., Zheng, X., Hu, X. X., Yang, C. C., Chen, Z., Qian, J. C., ... & Hu, G. X. (2020). Functional measurement of CYP2C9 and CYP3A4 allelic polymorphism on sildenafil metabolism. Drug Design, Development and Therapy, 5129-5141. tandfonline.com
10. Crowther MA. (2007). The role of monitoring in thrombosis prevention with warfarin. Canadian Medical Association Journal, 176(9), 128-130.
11. Lindley, K. J., Limdi, N. A., Cavallari, L. H., Perera, M. A., Lenzini, P., Johnson, J. A., ... & Gage, B. F. (2022). Warfarin dosing in patients with CYP2C9* 5 variant alleles. Clinical Pharmacology & Therapeutics, 111(4), 950-955. researchgate.net
12. Tracy TS, Chaudhry AS, Prasad B, et al. (2016). Interindividual variability in cytochrome P450-mediated drug metabolism. Drug Metabolism and Disposition, 44(3), 343-351.
13. Xu, Q., Zhang, S., Wu, C., Xiong, Y., Niu, J., Li, F., ... & Qin, S. (2021). Genetic associations with stable warfarin dose requirements in Han Chinese patients. Journal of Cardiovascular Pharmacology, 78(1), e105-e111. [HTML]
14. Duarte, J. D. & Cavallari, L. H. (2021). Pharmacogenetics to guide cardiovascular drug therapy. Nature Reviews Cardiology. nih.gov
15. Wadelius M, Pirmohamed M. (2007). Pharmacogenetics of warfarin: Current status and future challenges. Pharmacogenomics Journal, 7(2), 99-111.
16. Ren, Y., Yang, C., Chen, H., Dai, D., Wang, Y., Zhu, H., & Wang, F. (2020). Pharmacogenetic-guided algorithm to improve daily dose of warfarin in elder han-Chinese population. Frontiers in Pharmacology, 11, 1014. frontiersin.org
17. Gage BF, Bass AR, Lin H, et al. (2016). Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: The GIFT randomized clinical trial. JAMA, 314(14), 1456-1464.
18. Verhoef TI, Ragia G, de Boer A, et al. (2014). A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. New England Journal of Medicine, 370(24), 2304-2314.
19. Shah, R. R. (2020). Genotype‐guided warfarin therapy: Still of only questionable value two decades on. Journal of Clinical Pharmacy and Therapeutics. [HTML]
20. Schneider, K. L., Kunst, M., Leuchs, A. K., Böhme, M., Weckbecker, K., Kastenmüller, K., ... & Stingl, J. C. (2020). Phenprocoumon Dose Requirements, Dose Stability and Time in Therapeutic Range in Elderly Patients With CYP2C9 and VKORC1 Polymorphisms. Frontiers in Pharmacology, 10, 1620. frontiersin.org
21. Johnson JA, Gong L, Whirl‐Carrillo M, et al. (2011). Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clinical Pharmacology and Therapeutics, 90(4), 625-629.
22. Panchenko, E., Kropacheva, E., Dobrovolsky, A., Titaeva, E., Zemlyanskaya, O., Trofimov, D., ... & Grontkovskaya, A. (2020). CYP2C9 and VKORC1 genotyping for the quality of long-standing warfarin treatment in Russian patients. The pharmacogenomics journal, 20(5), 687-694. dna-technology.ru
23. Franks, P. W., Melén, E., Friedman, M., Sundström, J., Kockum, I., Klareskog, L., ... & Sullivan, P. F. (2021). Technological readiness and implementation of genomic‐driven precision medicine for complex diseases. Journal of Internal Medicine, 290(3), 602-620. wiley.com
24. Garrison LP, Mansley EC, Abbott TA, et al. (2013). Good research practices for measuring drug costs in cost-effectiveness analyses: A societal perspective: The ISPOR Drug Cost Task Force Report—Part II. Value in Health, 16(8), 10-18
25. Johnson JA, Gong L, Whirl-Carrillo M, et al. (2011). Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clinical Pharmacology and Therapeutics, 90(4), 625-629.
26. Rieder MJ, Reiner AP, Rettie AE. (2011). Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. Journal of Thrombosis and Haemostasis, 9(11), 2312-2314.