Enhancing Protein Solubility and Functionality: The receptor of the Egg Jelly Domain of Polycystin-1 protein
Main Article Content
Keywords
Polycystin-1, Receptor of the egg jelly (REJ) domain, Phosphoramidite synthetic method
Abstract
The polycystic kidney disease (PKD-1) gene produces the polycystin-1 (PC-1) protein, which includes a substantial extracellular region housing multiple functional polypeptide motifs. In this study, one of the domains of interest is the receptor of the egg jelly (REJ). In the field of proteomics research, generating recombinant proteins in their native, soluble state and in significant quantities often presents a substantial challenge. To address these challenges in expression, we employed expression vectors that incorporate a distinct affinity fusion tag, the maltose binding protein (MBP), to facilitate the production of the REJ fusion protein in a soluble form. MBP serves as a molecular chaperone, thereby aiding in the accurate folding of the fusion protein. Our data indicate that the inclusion of the MBP tag significantly improved both the yield and solubility of the REJ protein. The results obtained from our study provide an experimental approach for the further exploration of solubility, functionality, and interactions of REJ with extracellular matrix (ECM) proteins. Moreover, this approach lays the groundwork for a systematic investigation into the impact of disease-causing mutations within the REJ module of human PC-1, with the potential to greatly enhance the overall production of fused proteins.
References
Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Ulrikh, E., Ivanova, S., Prosekov, A., & Dolganyuk, V. (2021). Production, purification, and study of the amino acid composition of microalgae proteins. Molecules, 26 (9), 2767. https://doi.org/10.3390/molecules26092767.
Babbal, Mohanty, S., Dabburu, G.R., Kumar, M., & Khasa, Y.P. (2022). Heterologous expression of novel SUMO proteases from Schizosaccharomyces pombe in E. coli: Catalytic domain identification and optimization of product yields. International Journal of Biological Macromolecules, 209(Pt A), 1001–1019. https://doi.org/10.1016/j.ijbiomac.2022.04.078.
Babich, V., Zeng, W. Z., Yeh, B. I., Ibraghimov-Beskrovnaya, O., Cai, Y., Somlo, S., & Huang, C. L. (2004). The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. The Journal of Biological Chemistry, 279(24), 25582–25589. https://doi.org/10.1074/jbc.M402829200.
Bian, X., Jiang, H., Meng, Y., Li, Y., Fang, J., & Lu, Z. (2022). Regulation of Gene Expression by Glycolytic and Gluconeogenic Enzymes. Trends in Cell Biology, 32 (9), 786–799. https://doi.org/10.1016/j.tcb.2022.02.003.
Blommel, P.G., Becker, K.J., Duvnjak, P., & Fox, B.G. (2007). Enhanced Bacterial Protein Expression During Auto-Induction Obtained by Alteration of Lac Repressor Dosage and Medium Composition. Biotechnology Progress, 23 (3), 585–598. https://doi.org/10.1021/bp070011x.
Chapman, A. B., Bost, J. E., Torres, V. E., Guay-Woodford, L., Bae, K. T., Landsittel, D., Li, J., King, B. F., Martin, D., Wetzel, L. H., Lockhart, M. E., Harris, P. C., Moxey-Mims, M., Flessner, M., Bennett, W. M., & Grantham, J. J. (2012). Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clinical Journal of the American Society of Nephrology : CJASN, 7(3), 479–486. https://doi.org/10.2215/CJN.0950091
Chen, J.P., Gong, J.S., Su, C., Li, H., Xu, Z. H., & Shi, J.S. (2023). Improving the Soluble Expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metabolic Engineering, 78, 99–114. https://doi.org/10.1016/j.ymben.2023.05.007.
Cheung, R.C.F., Wong, J.H., &Ng, T.B. (2012). Immobilized metal ion affinity chromatography: A review on its applications. Applied Microbiology and Biotechnology, 96 (6), 1411–1420. https://doi.org/10.1007/s00253-012-4507-0.
Collins, I., & Wann, A. K. T. (2020). Regulation of the Extracellular Matrix by Ciliary Machinery. Cells, 9(2), 278. https://doi.org/10.3390/cells9020278.
Cornec-Le Gall, E., Alam, A., & Perrone, R. D. (2019). Autosomal dominant polycystic kidney disease. Lancet (London, England), 393(10174), 919–935. https://doi.org/10.1016/S0140-6736(18)32782-X
Courtney Ng, Zhifei W, Bin L, Yu, Y. (2021). Chapter 4 - Methods In Signal Transduction Series Ethods M In Signal Transduction Polycystic Kidney Disease.CRP Press Tylor & Francis Group, p86.
Fathi-Roudsari, M., Maghsoudi, N., Maghsoudi, A., Niazi, S., & Soleiman, M. (2018). Auto-Induction for High Level Production of Biologically Active Reteplase in Escherichia Coli. Protein Expression and Purification, 151, 18–22. https://doi.org/10.1016/j.pep.2018.05.008.
Gaglione, R., Pane, K., Dell’Olmo, E., Cafaro, V., Pizzo, E., Olivieri, G., Notomista, E., & Arciello, A. (2019). Cost-Effective production of recombinant peptides in Escherichia coli. New Biotechnology, 51, 39–48. https://doi.org/10.1016/j.nbt.2019.02.004.
Geisse, S., & Fux C. (2009). Recombinant protein production by transient gene transfer into mammalian cells. Methods in Enzymology, 463,223–238. https://doi.org/10.1016/s0076-6879(09)63015-9
Gholami, S.., Gheibi, N.., Falak, R.., & Chegini, K. G. (2018). Cloning, expression, purification and CD analysis of recombinant human betatrophin. Reports of Biochemistry & Molecular Biology, 6(2),158-163.
Grantham, J. J., Mulamalla, S., & Swenson-Fields, K. I. (2011). Why kidneys fail in autosomal dominant polycystic kidney disease. Nature reviews. Nephrology, 7(10), 556–566. https://doi.org/10.1038/nrneph.2011.109
Grantham, J. J., Torres, V. E., Chapman, A. B., Guay-Woodford, L. M., Bae, K. T., King, B. F., Jr, Wetzel, L. H., Baumgarten, D. A., Kenney, P. J., Harris, P. C., Klahr, S., Bennett, W. M., Hirschman, G. N., Meyers, C. M., Zhang, X., Zhu, F., Miller, J. P., & CRISP Investigators (2006). Volume progression in polycystic kidney disease. The New England journal of Medicine, 354(20), 2122–2130. https://doi.org/10.1056/NEJMoa054341
Greenfield, E.A., DeCaprio, J., & Brahmandam, M. (2020). Preparing GST-, His-, or MBP-fusion proteins from bacteria. Cold Spring Harbor Protocols, (9), pdb.prot100024. https://doi.org/10.1101/pdb.prot100024.
Grieben, M., Pike, A.C.W., Shintre, C.A., Venturi, E., El-Ajouz, S., Tessitore, A., Shrestha, L., Mukhopadhyay, S., Mahajan, P., Chalk, R.; Burgess-Brown, N. A., Sitsapesan, R., Huiskonen, J.T., & Carpenter, E.P. (2016). Structure of the Polycystic Kidney Disease TRP Channel Polycystin-2 (PC2). Nature Structural & Molecular Biology, 24 (2), 114–122. https://doi.org/10.1038/nsmb.3343.
Grund, M.E., Soo, J., Cote, C.K., Berisio, R., & Lukomski, S. (2021). Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells, 10 (3), 495. https://doi.org/10.3390/cells10030495.
Gunaratne, H. J., Moy, G. W., Kinukawa, M., Miyata, S., Mah, S. A., & Vacquier, V. D. (2007). The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC genomics, 8, 235. https://doi.org/10.1186/1471-2164-8-235.
Guo, Y., Yu, M., Jing, N., & Zhang, S. (2018). Production of Soluble Bioactive Mouse Leukemia Inhibitory Factor from Escherichia Coli Using MBP Tag. Protein Expression and Purification, 150, 86–91. https://doi.org/10.1016/j.pep.2018.05.006
Hasan, Md.M., Laws, M., Jin, P., & Rahman, K.M. (2022). Factors Influencing the Choice of Monoclonal Antibodies for Antibody–Drug Conjugates. Drug Discovery Today, 27 (1), 354–361. https://doi.org/10.1016/j.drudis.2021.09.015.
Hasegawa, N., Miura, T., Ishii, K., Yamaguchi, K., Lindner, T.H., Merritt, S., Matthews, J.D., Siddiqi, S. H. (2002). New simple and rapid test for culture confirmation of mycobacterium tuberculosis complex: A Multicenter study. Journal of Clinical Microbiology, 40 (3), 908–912. https://doi.org/10.1128/jcm.40.3.908-912.2002.
Hayat, S.M.G., Farahani, N., Golichenari, B., & Sahebkar, A. (2018). Recombinant protein expression in escherichia coli (e.coli): what we need to know. Current Pharmaceutical Design, 24 (6), 718–725. https://doi.org/10.2174/1381612824666180131121940.
IPKDCPKD (The International Polycystic Kidney Disease Consortium. Polycystic Kidney Disease) (1995). The Complete Structure of the PKD1 Gene and Its Protein. Cell, 81 (2),289–298. https://doi.org/10.1016/0092-8674(95)90339-9.
Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for Optimization of Heterologous Protein Expression in E. Coli: Roadblocks and Reinforcements. International Journal of Biological Macromolecules, 106, 803–822. https://doi.org/10.1016/j.ijbiomac.2017.08.080.
Ki, M.R., & Pack, S.P. (2020). Fusion Tags to Enhance Heterologous Protein Expression. Applied Microbiology and Biotechnology, 104 (6), 2411–2425. https://doi.org/10.1007/s00253-020-10402-8.
Köppl, C., Lingg, N., Fischer, A., Kröß, C., Loibl, J., Buchinger, W., Schneider, R., Jungbauer, A., Striedner, G., & Cserjan-Puschmann, M. (2022). Fusion Tag Design Influences Soluble Recombinant Protein Production in Escherichia coli. International journal of Molecular Sciences, 23(14), 7678. https://doi.org/10.3390/ijms23147678
Kurbegovic, A., Kim, H., Xu, H., Yu, S., Cruanès, J., Maser, R. L., Boletta, A., Trudel, M., & Qian, F. (2014). Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Molecular and Cellular Biology, 34(17), 3341–3353. https://doi.org/10.1128/MCB.00687-14.
Lloyd, E.C., Gandhi, T.N., & Petty, L.A. (2021). Monoclonal Antibodies for COVID-19. JAMA, 325 (10), 1015. https://doi.org/10.1001/jama.2021.1225.
Lozano Terol, G., Gallego-Jara, J., Sola Martínez, R. A., Martínez Vivancos, A., Cánovas Díaz, M., & de Diego Puente, T. (2021). Impact of the expression system on recombinant protein production in Escherichia coli BL21. Frontiers in microbiology, 12, 682001. https://doi.org/10.3389/fmicb.2021.682001
Luo, L., Roy, S., Li, L., & Ma, M. (2023). Polycystic kidney disease: novel insights into polycystin function. Trends in Molecular Medicine, 29(4), 268–281. https://doi.org/10.1016/j.molmed.2023.01.005
Marjuki, H., Topaz, N., Joseph, S. J., Gernert, K. M., Kersh, E. N., Antimicrobial-Resistant Neisseria gonorrhoeae Working Group, & Wang, X. (2019). Genetic similarity of gonococcal homologs to meningococcal outer membrane proteins of serogroup B Vaccine. mBio, 10(5), e01668-19. https://doi.org/10.1128/mBio.01668-19
Minkner, R., Xu, J., Takemura, K., Boonyakida, J., Wätzig, H., & Park, E.Y. (2020). Ni-Modified Magnetic Nanoparticles for Affinity Purification of His-Tagged Proteins from the Complex Matrix of the Silkworm Fat Body. Journal of Nanobiotechnology, 18 , 1-13. https://doi.org/10.1186/s12951-020-00715-1.
Nemergut, M., Škrabana, R., Berta, M., Plückthun, A., & Sedlák, E. (2021). Purification of MBP fusion proteins using engineered DARPin affinity matrix. International Journal of biological Macromolecules, 187, 105–112. https://doi.org/10.1016/j.ijbiomac.2021.07.117
Nguyen, M.T., Prima, M.J., Song, J.A., Kim, J., Do, B.H., Yoo, J., Park, S., Jang, J., Lee, S., Lee, E., Novais, M.P., Seo, H.B., Lee, S.Y., Cho, M.L., Kimm C.J., Jangm Y.J., Choe, H. (2019). Prokaryotic soluble overexpression and purification of oncostatin M using a fusion approach and genetically engineered E. coli strains. Scientific Reports, 23,9(1),13706. https://doi.org/10.1038/s41598-019-50110-6.
Pimienta, E., Rodríguez, S., Fando, R., Serrano, Y., Ortega, D., Palenzuela, A., & Marrero, K. (2019). Clonación y expresión en Escherichia coli de un gen L1 completo del virus del papiloma humano 18 aislado de una paciente cubana y variantes delecionadas. Revista Cubana de Medicina Tropical, 71(2), 1-25.
Qian, F., Wei, W., Germino, G., & Oberhauser, A. (2005). The Nanomechanics of Polycystin-1 Extracellular Region. Journal of Biological Chemistry, 280 (49), 40723–40730. https://doi.org/10.1074/jbc.m509650200.
Quartinello, F., Subagia, R., Zitzenbacher, S., Reich, J.,Vielnascher, R., Becher, E., Hall, M., Ribitsch, D., Guebitz, G.M. (2023). Dihydropyrimidinase from Saccharomyces Kluyveri Can Hydrolyse Polyamides. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1158226.
Ren, J., Hwang, S., Shen, J., Kim, H., Kim, H., Kim, J., Ahn, S., Kim, M., Lee, S.H., & Na, D. (2022). Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide. Journal of Microbiology, 60 (9), 960–967. https://doi.org/10.1007/s12275-022-2122-z.
Reuten, R., Nikodemus, D., Oliveira, M.B., Patel, T.R., Brachvogel, B., Breloy, I., Stetefeld, J., & Koch, M. (2016). Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems. PLOS ONE, 11 (3), e0152386. https://doi.org/10.1371/journal.pone.0152386.
Riguero, V., Clifford, R., Dawley, M., Dickson, M., Gastfriend, B., Thompson, C., Wang, S. C., O’Connor, E. (2020). Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. Journal of Chromatography A, 1629, 461505. https://doi.org/10.1016/j.chroma.2020.461505.
Rosano, G.L., Morales, E.S., & Ceccarelli, E.A. (2019). New Tools for Recombinant Protein Production in Escherichia Coli: A 5‐year Update. Protein Science, 28 (8), 1412–1422. https://doi.org/10.1002/pro.3668.
Schröder, S., Fraternali, F., Quan, X., Scott, D., Qian, F., Pfuhl, M. (2011). When a module is not a domain: The case of the rej module and the redefinition of the architecture of polycystin-1. Biochemical Journal, 435 (3), 651–660. https://doi.org/10.1042/bj20101810.
Shafique, Q.A., Batool, S., Ashfaq, H., Tayyab, A., Gul, R., & Saleem, M. (2022). Cloning and Expression of Human Interleukin 2 (IL-2) in E. coli and its Antitumor Activity . Pakistan Journal of Zoology, 1-7. : https://dx.doi.org/10.17582/journal.pjz/20220822180803
Sonbol, H.S. & AlRashidi, A.A. (2022). Cloning and Expression of Receptor of Egg Jelly Protein of Polycystic Kidney Disease 1 Gene in Human Receptor of Egg Jelly Protein. Pharmacophore, 13 (6), 97–105. https://doi.org/10.51847/vqghabllgj.
Srivastava, D., Gakhar, L., & Artemyev, N.O. (2019). Structural underpinnings of ric8A function as a G-protein α-subunit chaperone and guanine-nucleotide exchange factor. Nature Communications, 10 (1). https://doi.org/10.1038/s41467-019-11088-x.
Streets, A. J., Wagner, B. E., Harris, P. C., Ward, C. J., & Ong, A.C.M. (2009). Homophilic and heterophilic polycystin 1 interactions regulate e-cadherin recruitment and junction assembly in MDCK cells. Journal of Cell Science, 122 (9), 1410–1417. https://doi.org/10.1242/jcs.045021.
Sun, A.,Wang, R. Y., & PPuliyanda, D. (2013). Cystic diseases of the kidney. Emery and Rimoin's Essential Medical Genetics, 252.
Tan, D.J.Y., Cheong, V.V., Lim, K.W., & Phan, A.T.A. (2021). Modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chemical Communications, 57 (45), 5507–5510. https://doi.org/10.1039/d1cc01348c.
Vien, T.N.; Ng, L.C.T.; Smith, J. M.; Dong, K.; Krappitz, M.; Gainullin, V. G.; Fedeles, S.; Harris, P. C.; Somlo, S.; DeCaen, P. G. (2020). Disrupting Polycystin-2 EF Hand Ca2+ Affinity Does Not Alter Channel Function or Contribute to Polycystic Kidney Disease. Journal of Cell Science, 133(24) https://doi.org/10.1242/jcs.255562.
Weston, B.S., Malhas, A.N., & Price, R.G. (2003). Structure–function relationships of the extracellular domain of the autosomal dominant polycystic kidney disease‐associated protein, polycystin‐1. FEBS Letters, 538 (1–3), 8–13. https://doi.org/10.1016/s0014-5793(03)00130-3.
Xing, J., Ma, L., Cheng, X., Ma, J., Wang, R., Xu, K.,Mymryk, J. S., & Zhang, Z. (2021). Expression and Functional Analysis of the Argonaute Protein of Thermus Thermophilus (TtAgo) in E. Coli BL21(DE3). Biomolecules, 11 (4), 524. https://doi.org/10.3390/biom11040524.
Xu, M., Ma, L., Bujalowski, P. J., Qian, F., Sutton, R. B., & Oberhauser, A. F. (2013). Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques. Journal of biophysics (Hindawi Publishing Corporation : Online), 2013, 525231. https://doi.org/10.1155/2013/525231.
Zhang, C., Balbo, B., Ma, M., Zhao, J., Tian, X., Kluger, Y., Somlo, S. (2021). Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. Journal of the American Society of Nephrology, 32 (1), 41–51. https://doi.org/10.1681/asn.2020040511