Hypocalcemia and Hypovitaminosis D in COVID-19 Patients are Related to High Fibroblast Growth Factor 23 and Sclerostin Concentrations
Main Article Content
Keywords
Fibroblast Growth Factor 23, Sclerostin, hypocalcemia, hypovitaminosis D, Calcitriol, COVID-19.
Abstract
Hypocalcemia is highly prevalent among positive COVID-19 patients which can be explained by insufficient vitamin D levels detected among them. This study measures serum levels of fibroblast growth factor 23 and sclerostin, which cause suppression of renal 1-α hydroxylase enzyme that is responsible for vitamin D activation.
Methods
It is a case control study that includes 22 healthy controls (Group A), 22 mild/moderate SARS-CoV-2 patients (Group B), and 22 severe/critical patients (Group C). Serum levels of ionized calcium, calcitriol, parathyroid hormone, fibroblast growth factor 23, and sclerostin were measured using ELISA.
Results
The lowest levels of both calcium and calcitriol were detected in group (C) and the highest levels were detected in group (A) with a significant variation between these two groups. Levels of both fibroblast growth factor 23 and sclerostin were the highest in group (C) and the lowest in group (A). Differences between all groups showed significance except the difference in sclerostin levels between group (A) and (B). Both fibroblast growth factor 23 and sclerostin levels showed significant negative correlations with calcium and calcitriol levels. A significant positive correlation was detected between sclerostin levels and fibroblast growth factor 23 levels.
Conclusion
Fibroblast Growth Factor 23 and sclerostin are strong indicators for COVID-19 infection severity. As they suppress renal 1-α hydroxylase enzyme, they have a crucial role in COVID-19 associated hypocalcemia through inhibition of vitamin D activation. Thus, better prognosis can be achieved by active vitamin D supplementation rather than inactive forms.
References
2. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed February 15, 2023.
3. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2022 Oct 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/
4. Centers for Disease Control and Prevention (CDC). Symptoms of COVID-19, Updated Oct. 26, 2022 https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed February 15, 2023.
5. Martinez-Rojas, M. A., Vega-Vega, O., & Bobadilla, N. A. (2020). Is the kidney a target of SARS-CoV-2?. American lliurnal of physiology. Renal physiology, 318(6), F1454–F1462. https://doi.org/10.1152/ajprenal.00160.2020
6. di Filippo, L., Doga, M., Frara, S., & Giustina, A. (2022). Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Reviews in endocrine & metabolic disorders, 23(2), 299–308. https://doi.org/10.1007/s11154-021-09655-z
7. Cappellini, F., Brivio, R., Casati, M., Cavallero, A., Contro, E., & Brambilla, P. (2020). Low levels of total and ionized calcium in blood of COVID-19 patients. Clinical chemistry and laboratory medicine, 58(9), e171–e173. https://doi.org/10.1515/cclm-2020-0611
8. Elezagic, D., Johannis, W., Burst, V., Klein, F., & Streichert, T. (2021). Venous blood gas analysis in patients with COVID-19 symptoms in the early assessment of virus positivity. Journal of Laboratory Medicine, 45(1), 27-30. https://doi.org/10.1515/labmed-2020-0126
9. di Filippo, L., Formenti, A. M., Doga, M., Frara, S., Rovere-Querini, P., Bosi, E., Carlucci, M., & Giustina, A. (2021). Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine, 71(1), 9–13. https://doi.org/10.1007/s12020-020-02541-9a
10. Martha, J. W., Wibowo, A., & Pranata, R. (2021). Hypocalcemia is associated with severe COVID-19: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 337-342. https://doi.org/10.1016/j.dsx.2021.01.003
11. D'Avolio, A., Avataneo, V., Manca, A., Cusato, J., De Nicolò, A., Lucchini, R., Keller, F., & Cantù, M. (2020). 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients, 12(5), 1359. https://doi.org/10.3390/nu12051359
12. Sun, J. K., Zhang, W. H., Zou, L., Liu, Y., Li, J. J., Kan, X. H., Dai, L., Shi, Q. K., Yuan, S. T., Yu, W. K., Xu, H. Y., Gu, W., & Qi, J. W. (2020). Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging, 12(12), 11287–11295. https://doi.org/10.18632/aging.103526
13. Hutchings, N., Babalyan, V., Baghdasaryan, S., Qefoyan, M., Sargsyants, N., Aghajanova, E., Martirosyan, A., Harutyunyan, R., Lesnyak, O., Formenti, A. M., Giustina, A., & Bilezikian, J. P. (2021). Patients hospitalized with COVID-19 have low levels of 25-hydroxyvitamin D. Endocrine, 71(2), 267–269. https://doi.org/10.1007/s12020-020-02597-7
14. Demir, M., Demir, F., &Aygun, H. (2021). Vitamin D deficiency is associated with COVID-19 positivity and severity of the disease. Journal of medical virology, 93(5), 2992-2999. https://doi.org/10.1002/jmv.26832
15. Bennouar, S., Cherif, A. B., Kessira, A., Bennouar, D. E., & Abdi, S. (2021). Vitamin D Deficiency and Low Serum Calcium as Predictors of Poor Prognosis in Patients with Severe COVID-19. Journal of the American College of Nutrition, 40(2), 104–110. https://doi.org/10.1080/07315724.2020.1856013
16. Carpagnano, G. E., Di Lecce, V., Quaranta, V. N., Zito, A., Buonamico, E., Capozza, E., Palumbo, A., Di Gioia, G., Valerio, V. N., & Resta, O. (2021). Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. Journal of endocrinological investigation, 44(4), 765–771. https://doi.org/10.1007/s40618-020-01370-x
17. di Filippo, L., Allora, A., Locatelli, M., Rovere Querini, P., Frara, S., Banfi, G., & Giustina, A. (2021). Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine, 74(2), 219–225. https://doi.org/10.1007/s12020-021-02882-zb
18. Itoh, N., Ohta, H., & Konishi, M. (2015). Endocrine FGFs: Evolution, Physiology, Pathophysiology, and Pharmacotherapy. Frontiers in endocrinology, 6, 154. https://doi.org/10.3389/fendo.2015.00154
19. Shimada, T., Mizutani, S., Muto, T., Yoneya, T., Hino, R., Takeda, S., Takeuchi, Y., Fujita, T., Fukumoto, S., & Yamashita, T. (2001). Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6500–6505. https://doi.org/10.1073/pnas.101545198
20. Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., Fujita, T., Nakahara, K., Fukumoto, S., & Yamashita, T. (2004). FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 19(3), 429–435. https://doi.org/10.1359/JBMR.0301264
21. Quarles L. D. (2012). Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Experimental cell research, 318(9), 1040–1048. https://doi.org/10.1016/j.yexcr.2012.02.027
22. Martin, A., David, V., & Quarles, L. D. (2012). Regulation and function of the FGF23/klotho endocrine pathways. Physiological reviews, 92(1), 131–155. https://doi.org/10.1152/physrev.00002.2011
23. van Bezooijen, R. L., Roelen, B. A., Visser, A., van der Wee-Pals, L., de Wilt, E., Karperien, M., Hamersma, H., Papapoulos, S. E., ten Dijke, P., & Löwik, C. W. (2004). Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. The Journal of experimental medicine, 199(6), 805–814. https://doi.org/10.1084/jem.20031454
24. Li, X., Zhang, Y., Kang, H., Liu, W., Liu, P., Zhang, J., Harris, S. E., & Wu, D. (2005). Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. The Journal of biological chemistry, 280(20), 19883–19887. https://doi.org/10.1074/jbc.M413274200
25. Bennett, C. N., Longo, K. A., Wright, W. S., Suva, L. J., Lane, T. F., Hankenson, K. D., & MacDougald, O. A. (2005). Regulation of osteoblastogenesis and bone mass by Wnt10b. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3324–3329. https://doi.org/10.1073/pnas.0408742102
26. Rodda, S. J., & McMahon, A. P. (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development (Cambridge, England), 133(16), 3231–3244. https://doi.org/10.1242/dev.02480
27. Baron, R., & Rawadi, G. (2007). Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology, 148(6), 2635–2643. https://doi.org/10.1210/en.2007-0270
28. Li, X., Ominsky, M. S., Niu, Q. T., Sun, N., Daugherty, B., D'Agostin, D., Kurahara, C., Gao, Y., Cao, J., Gong, J., Asuncion, F., Barrero, M., Warmington, K., Dwyer, D., Stolina, M., Morony, S., Sarosi, I., Kostenuik, P. J., Lacey, D. L., Simonet, W. S., … Paszty, C. (2008). Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 23(6), 860–869. https://doi.org/10.1359/jbmr.080216
29. Ryan, Z. C., Ketha, H., McNulty, M. S., McGee-Lawrence, M., Craig, T. A., Grande, J. P., Westendorf, J. J., Singh, R. J., & Kumar, R. (2013). Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6199–6204. https://doi.org/10.1073/pnas.1221255110
30. Yamada, T., Wakabayashi, M., Yamaji, T., Chopra, N., Mikami, T., Miyashita, H., & Miyashita, S. (2020). Value of leukocytosis and elevated C-reactive protein in predicting severe coronavirus 2019 (COVID-19): A systematic review and meta-analysis. Clinica chimica acta; international journal of clinical chemistry, 509, 235–243. https://doi.org/10.1016/j.cca.2020.06.008
31. Sabaghian, T., Kharazmi, A. B., Ansari, A., Omidi, F., Kazemi, S. N., Hajikhani, B., Vaziri-Harami, R., Tajbakhsh, A., Omidi, S., Haddadi, S., Shahidi Bonjar, A. H., Nasiri, M. J., & Mirsaeidi, M. (2022). COVID-19 and Acute Kidney Injury: A Systematic Review. Frontiers in medicine, 9, 705908. https://doi.org/10.3389/fmed.2022.705908
32. Liu, J., Han, P., Wu, J., Gong, J., & Tian, D. (2020). Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. Journal of infection and public health, 13(9), 1224–1228. https://doi.org/10.1016/j.jiph.2020.05.029
33. Pal, R., Ram, S., Zohmangaihi, D., Biswas, I., Suri, V., Yaddanapudi, L. N., Malhotra, P., Soni, S. L., Puri, G. D., Bhalla, A., & Bhadada, S. K. (2021). High Prevalence of Hypocalcemia in Non-severe COVID-19 Patients: A Retrospective Case-Control Study. Frontiers in medicine, 7, 590805. https://doi.org/10.3389/fmed.2020.590805
34. Zhou, X., Chen, D., Wang, L., Zhao, Y., Wei, L., Chen, Z., & Yang, B. (2020). Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Bioscience reports, 40(12), BSR20202690. Advance online publication. https://doi.org/10.1042/BSR20202690
35. Torres, B., Alcubilla, P., González-Cordón, A., Inciarte, A., Chumbita, M., Cardozo, C., Meira, F., Giménez, M., de Hollanda, A., Soriano, A., & COVID19 Hospital Clínic Infectious Diseases Research Group (2021). Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 104, 164–168. https://doi.org/10.1016/j.ijid.2020.11.207
36. Tezcan, M. E., Dogan Gokce, G., Sen, N., Zorlutuna Kaymak, N., & Ozer, R. S. (2020). Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New microbes and new infections, 37, 100753. https://doi.org/10.1016/j.nmni.2020.100753
37. di Filippo, L., Formenti, A. M., Rovere-Querini, P., Carlucci, M., Conte, C., Ciceri, F., Zangrillo, A., & Giustina, A. (2020). Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine, 68(3), 475–478. https://doi.org/10.1007/s12020-020-02383-5
38. Wu, Y., Hou, B., Liu, J., Chen, Y., & Zhong, P. (2020). Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Frontiers in medicine, 7, 315. https://doi.org/10.3389/fmed.2020.00315
39. Allard, L., Ouedraogo, E., Molleville, J., Bihan, H., Giroux-Leprieur, B., Sutton, A., Baudry, C., Josse, C., Didier, M., Deutsch, D., Bouchaud, O., & Cosson, E. (2020). Malnutrition: Percentage and Association with Prognosis in Patients Hospitalized for Coronavirus Disease 2019. Nutrients, 12(12), 3679. https://doi.org/10.3390/nu12123679
40. Anker, M. S., Landmesser, U., von Haehling, S., Butler, J., Coats, A. J. S., & Anker, S. D. (2021). Weight loss, malnutrition, and cachexia in COVID-19: facts and numbers. Journal of cachexia, sarcopenia and muscle, 12(1), 9–13. https://doi.org/10.1002/jcsm.12674
41. di Filippo, L., De Lorenzo, R., D'Amico, M., Sofia, V., Roveri, L., Mele, R., Saibene, A., Rovere-Querini, P., & Conte, C. (2021). COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clinical nutrition (Edinburgh, Scotland), 40(4), 2420–2426. https://doi.org/10.1016/j.clnu.2020.10.043c
42. Pironi, L., Sasdelli, A. S., Ravaioli, F., Baracco, B., Battaiola, C., Bocedi, G., Brodosi, L., Leoni, L., Mari, G. A., & Musio, A. (2021). Malnutrition and nutritional therapy in patients with SARS-CoV-2 disease. Clinical nutrition (Edinburgh, Scotland), 40(3), 1330–1337. https://doi.org/10.1016/j.clnu.2020.08.021
43. Hernández, J. L., Nan, D., Fernandez-Ayala, M., García-Unzueta, M., Hernández-Hernández, M. A., López-Hoyos, M., Muñoz-Cacho, P., Olmos, J. M., Gutiérrez-Cuadra, M., Ruiz-Cubillán, J. J., Crespo, J., & Martínez-Taboada, V. M. (2021). Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. The Journal of clinical endocrinology and metabolism, 106(3), e1343–e1353. https://doi.org/10.1210/clinem/dgaa733
44. Podd, Daniel MPAS, PA-C. (2015). Hypovitaminosis D: A common deficiency with pervasive consequences. JAAPA 28(2):p 20-26. https://doi.org/10.1097/01.JAA.0000459810.95512.14
45. Kaufman, H. W., Niles, J. K., Kroll, M. H., Bi, C., & Holick, M. F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PloS one, 15(9), e0239252. https://doi.org/10.1371/journal.pone.0239252
46. Maghbooli, Z., Sahraian, M. A., Ebrahimi, M., Pazoki, M., Kafan, S., Tabriz, H. M., Hadadi, A., Montazeri, M., Nasiri, M., Shirvani, A., & Holick, M. F. (2020). Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PloS one, 15(9), e0239799. https://doi.org/10.1371/journal.pone.0239799
47. Radujkovic, A., Hippchen, T., Tiwari-Heckler, S., Dreher, S., Boxberger, M., & Merle, U. (2020). Vitamin D deficiency and outcome of COVID-19 patients. Nutrients, 12(9), 2757. https://doi.org/10.3390/nu12092757
48. Murai, I. H., Fernandes, A. L., Sales, L. P., Pinto, A. J., Goessler, K. F., Duran, C. S. C., Silva, C. B. R., Franco, A. S., Macedo, M. B., Dalmolin, H. H. H., Baggio, J., Balbi, G. G. M., Reis, B. Z., Antonangelo, L., Caparbo, V. F., Gualano, B., & Pereira, R. M. R. (2021). Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA, 325(11), 1053–1060. https://doi.org/10.1001/jama.2020.26848
49. Waldron, J. L., Ashby, H. L., Cornes, M. P., Bechervaise, J., Razavi, C., Thomas, O. L., ... & Gama, R. (2013). Vitamin D: a negative acute phase reactant. Journal of clinical pathology, 66(7), 620-622. http://dx.doi.org/10.1136/jclinpath-2012-201301
50. Elamir, Y. M., Amir, H., Lim, S., Rana, Y. P., Lopez, C. G., Feliciano, N. V., Omar, A., Grist, W. P., & Via, M. A. (2022). A randomized pilot study using calcitriol in hospitalized COVID-19 patients. Bone, 154, 116175. https://doi.org/10.1016/j.bone.2021.116175
51. Oristrell, J., Oliva, J.C., Casado, E. et al. Vitamin D supplementation and COVID-19 risk: a population-based, cohort study. J Endocrinol Invest 45, 167–179 (2022). https://doi.org/10.1007/s40618-021-01639-9
52. Oristrell, J., Oliva, J. C., Subirana, I., Casado, E., Domínguez, D., Toloba, A., Aguilera, P., Esplugues, J., Fafián, P., & Grau, M. (2021). Association of Calcitriol Supplementation with Reduced COVID-19 Mortality in Patients with Chronic Kidney Disease: A Population-Based Study. Biomedicines, 9(5), 509. https://doi.org/10.3390/biomedicines9050509
53. Henderson, C. M., Fink, S. L., Bassyouni, H., Argiropoulos, B., Brown, L., Laha, T. J., Jackson, K. J., Lewkonia, R., Ferreira, P., Hoofnagle, A. N., & Marcadier, J. L. (2019). Vitamin D-Binding Protein Deficiency and Homozygous Deletion of the GC Gene. The New England journal of medicine, 380(12), 1150–1157. https://doi.org/10.1056/NEJMoa1807841
54. Annweiler, C., Hanotte, B., de l’Eprevier, C. G., Sabatier, J. M., Lafaie, L., & Célarier, T. (2020). Vitamin D and survival in COVID-19 patients: A quasi-experimental study. The Journal of steroid biochemistry and molecular biology, 204, 105771. https://doi.org/10.1016/j.jsbmb.2020.105771
55. Alcala-Diaz, J. F., Limia-Perez, L., Gomez-Huelgas, R., Martin-Escalante, M. D., Cortes-Rodriguez, B., Zambrana-Garcia, J. L., Entrenas-Castillo, M., Perez-Caballero, A. I., López-Carmona, M. D., Garcia-Alegria, J., Lozano Rodríguez-Mancheño, A., Arenas-de Larriva, M. D. S., Pérez-Belmonte, L. M., Jungreis, I., Bouillon, R., Quesada-Gomez, J. M., & Lopez-Miranda, J. (2021). Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. Nutrients, 13(6), 1760. https://doi.org/10.3390/nu13061760
56. Entrenas Castillo, M., Entrenas Costa, L. M., Vaquero Barrios, J. M., Alcalá Díaz, J. F., López Miranda, J., Bouillon, R., & Quesada Gomez, J. M. (2020). "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". The Journal of steroid biochemistry and molecular biology, 203, 105751. https://doi.org/10.1016/j.jsbmb.2020.105751
57. Gibbons, J. B., Norton, E. C., McCullough, J. S., Meltzer, D. O., Lavigne, J., Fiedler, V. C., & Gibbons, R. D. (2022). Association between vitamin D supplementation and COVID-19 infection and mortality. Scientific Reports, 12(1), 19397. https://doi.org/10.1038/s41598-022-24053-4
58. Povaliaeva, A., Bogdanov, V., Pigarova, E., Dzeranova, L., Katamadze, N., Malysheva, N., Ioutsi, V., Nikankina, L., Rozhinskaya, L., & Mokrysheva, N. (2022). Impaired Vitamin D Metabolism in Hospitalized COVID-19 Patients. Pharmaceuticals (Basel, Switzerland), 15(8), 906. https://doi.org/10.3390/ph15080906
59. Hashemipour, S., Kiani, S., Shahsavari, P., Afshar, S., Ghobadi, A., Khairkhahan, S. M. R. H., Badri, M., Farzam, S. S., Sohrabi, H., Seddighi, M., & Bahadori, R. (2022). Hypocalcemia in hospitalized patients with COVID-19: roles of hypovitaminosis D and functional hypoparathyroidism. Journal of bone and mineral metabolism, 40(4), 663–669. https://doi.org/10.1007/s00774-022-01330-wa
60. Hashemipour, S., Kiani, S., Shahsavari, P., Badri, M., Ghobadi, A., Hadizadeh Khairkhahan, S. M. R., Ranjbaran, M., & Gheraati, M. (2022). Contributing Factors for Calcium Changes During Hospitalization in COVID-19: A Longitudinal Study. International journal of endocrinology and metabolism, 20(2), e122378. https://doi.org/10.5812/ijem-122378b
61. Hanudel, M. R., Laster, M., & Salusky, I. B. (2018). Non-renal-related mechanisms of FGF23 pathophysiology. Current osteoporosis reports, 16, 724-729. https://doi.org/10.1007/s11914-018-0492-2
62. Rodríguez-Ortiz, M. E., Díaz-Tocados, J. M., Muñoz-Castañeda, J. R., Herencia, C., Pineda, C., Martínez-Moreno, J. M., Montes de Oca, A., López-Baltanás, R., Alcalá-Díaz, J., Ortiz, A., Aguilera-Tejero, E., Felsenfeld, A., Rodríguez, M., & Almadén, Y. (2020). Inflammation both increases and causes resistance to FGF23 in normal and uremic rats. Clinical science (London, England : 1979), 134(1), 15–32. https://doi.org/10.1042/CS20190779
63. David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., Zumbrennen-Bullough, K. B., Sun, C. C., Lin, H. Y., Babitt, J. L., & Wolf, M. (2016). Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney international, 89(1), 135–146. https://doi.org/10.1038/ki.2015.290
64. Zhou, M., Li, S., & Pathak, J. L. (2019). Pro-inflammatory Cytokines and Osteocytes. Current osteoporosis reports, 17(3), 97–104. https://doi.org/10.1007/s11914-019-00507-z
65. Christov, M., Waikar, S. S., Pereira, R. C., Havasi, A., Leaf, D. E., Goltzman, D., Pajevic, P. D., Wolf, M., & Jüppner, H. (2013). Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney international, 84(4), 776–785. https://doi.org/10.1038/ki.2013.150
66. Perwad, F., Zhang, M. Y., Tenenhouse, H. S., & Portale, A. A. (2007). Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro. American Journal of Physiology-Renal Physiology, 293(5), F1577-F1583. https://doi.org/10.1152/ajprenal.00463.2006
67. Tartaglione, L., Pasquali, M., Rotondi, S., Muci, M. L., Leonangeli, C., Farcomeni, A., Fassino, V., & Mazzaferro, S. (2017). Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PloS one, 12(5), e0178637. https://doi.org/10.1371/journal.pone.0178637
68. National Institutes of Health (NIH). Clinical Spectrum of SARS-CoV-2 Infection Updated Oct. 26, 2022 https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/. Accessed February 15, 2023.