Main Article Content

Colin JD Ross
Henk Visscher
S Rod Rassekh
Lucila I Castro-Pastrana
Evan Shereck
Bruce Carleton
Michael R Hayden


Adverse drug reactions, pharmacogenomics, pediatric, oncology


Adverse drug reactions (ADRs) rank as one of the top ten leading causes of death and illness in the developed world. In cancer therapy, more patients are surviving cancer than ever before, but 40% of cancer survivors suffer life-threatening or permanently disabling severe ADRs and are left with long-term sequelae. ADRs are often more frequent and more severe in children, and the consequences for children who experience a severe ADR can be catastrophic. Pharmacogenomics has the potential to improve the safety of these drugs. This review highlights severe ADRs that can occur in cancer therapy that are more frequent and more severe in children, and the pharmacogenomics research that aims to understand, predict, and ultimately prevent these severe reactions.

Abstract 476 | PDF Downloads 166


1. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004;329(7456):15-19.
2. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279(15):1200-1205.
3. Ernst FR, Grizzle AJ. Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Phar Assoc 2001;41(2):192-199.
4. White TJ, Arakelian A, Rho JP. Counting the costs of drug-related adverse events. Pharmacoecon 1999;15(5):445-458.
5. Impicciatore M. Pharmacogenomic can give children safer medicines. Arch Dis Child 2003;88(4):366.
6. Ellison LF, De P, Mery LS, Grundy PE. Canadian cancer statistics at a glance: cancer in children. CMAJ 2009;180(4):422-424.
7. Geenen MM, Cardous-Ubbink MC, Kremer LC, et al. Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. JAMA 2007;297(24):2705-2715.
8. Mitchell AA, Lacouture PG, Sheehan JE, Kauffman RE, Shapiro S. Adverse drug reactions in children leading to hospital admission. Pediatrics 1988;82(1):24-29.
9. Jaja C, Rothstein M. Pharmacogenomics. New York: John Wiley and Sons, Inc.; 2003.
10. Kling J. US FDA contemplates collection of pharmacogenomic data. Nat Biotechnol 2003;21(6):590.
11. Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1997;277(4):301- 306.
12. Kalow W, Tang BK, Endrenyi L. Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogen 1998;8(4):283-289.
13. Meisel C, Gerloff T, Kirchheiner J, et al. Implications of pharmacogenetics for individualizing drug treatment and for study design. J Mol Med 2003;81(3):154-167.
14. Lindpaintner K. Pharmacogenetics and the future of medical practice. J Mol Med 2003;81(3):141-153.
15. Woodcock J, Lesko LJ. Pharmacogenetics-- tailoring treatment for the outliers. N Engl J Med 2009;360(8):811-813.
16. Iyer L, Hall D, Das S, et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 1999;65(5):576-582.
17. Perera MA, Innocenti F, Ratain MJ. Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 2008;28(6):755-768.
18. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32(5):651-662.
19. Gurwitz D, Rodriguez-Antona C, Payne K, et al. Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the UK and Spain. Eur J Hum Genet 2009;17(8):991-998.
20. Dezentje VO, Guchelaar HJ, Nortier JW, van de Velde CJ, Gelderblom H. Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin Cancer Res 2009;15(1):15-21.
21. Coller JK, Krebsfaenger N, Klein K, et al. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol. 2002;54(2):157-167.
22. Klein TE, Altman RB, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009;360(8):753-764.
23. Kim MJ, Huang SM, Meyer UA, Rahman A, Lesko LJ. A regulatory science perspective on warfarin therapy: a pharmacogenetic opportunity. J Clin Pharmacol 2009;49(2):138- 146.
24. Krynetski EY, Evans WE. Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 1999;16(3):342-349.
25. Krynetski EY, Tai HL, Yates CR, et al. Genetic polymorphism of thiopurine Smethyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 1996;6(4):279-290.
26. Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine Smethyltransferase phenotype-genotype correlation in a large population of German- Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004;14(7):407-417.
27. McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 1994;55(1):15-20.
28. Schaeffeler E, Eichelbaum M, Reinisch W, Zanger UM, Schwab M. Three novel thiopurine S-methyltransferase allelic variants (TPMT*20, *21, *22) - association with decreased enzyme function. Hum Mutat 2006;27(9):976.
29. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferasedeficient child with acute lymphocytic leukemia. J Pediatr 1991;119(6):985-989.
30. McLeod HL, Miller DR, Evans WE. Azathioprineinduced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 1993;341(8853):1151.
31. Schutz E, Gummert J, Mohr F, Oellerich M. Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 1993;341(8842):436.
32. Haga SB, Thummel KE, Burke W. Adding pharmacogenetics information to drug labels: lessons learned. Pharmacogenet Genomics 2006;16(12):847-854.
33. Stanulla M, Schaeffeler E, Flohr T, et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005; 293(12):1485-1489.
34. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6- mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93(9):2817-2823.
35. McLeod HL, Coulthard S, Thomas AE, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999;105(3):696-700.
36. Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 2009;85(2):164-172.
37. Roberts RL, Gearry RB, Kennedy MA, Barclay ML. Beyond TPMT: genetic influences on thiopurine drug responses in inflammatory bowel disease. Personalized Medicine 2008;5(3):233-248.
38. Van Dieren JM, Hansen BE, Kuipers EJ, Nieuwenhuis EE, Van der Woude CJ. Metaanalysis: inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther 2007;26(5):643-652.
39. Porter CC, Carver AE, Albano EA. Vincristine induced peripheral neuropathy potentiated byvoriconazole in a patient with previously undiagnosed CMT1X. Pediatr Blood Cancer 2009;52(2): 298-300.
40. Tisdale JE, Miller DA. Drug-induced diseases. Prevention, detection and management. . Bethesda, MD: American Society of Health- System Pharmacists. 2005.
41. Tarlaci S. Vincristine-induced fatal neuropathy in non-Hodgkin's lymphoma. Neurotoxicology 2008;29(4):748-749.
42. Abbrederis K, Michlmayr G, Schmalzl F. Acute lymphatic leukemia in adults. Therapy and prognosis in comparison with acute myelogenous leukemia. Med Klin 1974;69(10):427-431.
43. Toghill PJ, Burke JD. Death from paralytic ileus following vincristine therapy. Postgrad Med J 1970;46(535):330-331.
44. Kuruvilla G, Perry S, Wilson B, El-Hakim H. The natural history of vincristine-induced laryngeal paralysis in children. Arch Otolaryngol Head Neck Surg 2009;135(1):101-105.
45. Rowbotham MC, Twilling L, Davies PS, Reisner L, Taylor K, Mohr D. Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 2003;348(13):1223-1232.
46. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 2005;352(13):1324-1334.
47. Callizot N, Andriambeloson E, Glass J, et al. Interleukin-6 protects against paclitaxel, cisplatin and vincristine-induced neuropathies without impairing chemotherapeutic activity. Cancer Chemother Pharmacol 2008;62(6):995- 1007.
48. Verstappen CC, Koeppen S, Heimans JJ, et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 2005;64(6):1076-1077.
49. Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain Symptom Manage 2007;33(2):166-179.
50. Groninger E, Meeuwsen-de Boer T, Koopmans P, et al. Vincristine pharmacokinetics and response to vincristine monotherapy in an upfront window study of the Dutch Childhood Leukaemia Study Group (DCLSG). Eur J Cancer 2005;41(1):98-103.
51. McCune JS, Lindley C. Appropriateness of maximum-dose guidelines for vincristine. Am J Health Syst Pharm 1997;54(15):1755-1758.
52. Frost BM, Lonnerholm G, Koopmans P, et al. Vincristine in childhood leukaemia: no pharmacokinetic rationale for dose reduction in adolescents. Acta Paediatr 2003;92(5):551-557.
53. Van den Berg HW, Desai ZR, Wilson R, Kennedy G, Bridges JM, Shanks RG. The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Canc Chemo Pharm 1982;8(2):215- 219.
54. Lange BJ, Bostrom BC, Cherlow JM, et al. Double-delayed intensification improves eventfree survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2002;99(3):825-833.
55. Pollock BH, DeBaun MR, Camitta BM, et al. Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Onc 2000;18(4): 813-823.
56. Leveque D, Jehl F. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J Clin Pharmacol 2007;47(5):579-588.
57. Dennison JB, Jones DR, Renbarger JL, Hall SD. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther 2007;321(2):553-563.
58. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27(4):383-391.
59. Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer 2008;50(4): 769-771.
60. Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007;109(10):4151-4157.
61. Ansari M, St-Onge G, Krajinovic M. Pharmacogenomics of acute lymphoblastic leukemia. Med Sci (Paris) 2007;23(11):961-967.
62. Hiser L, Herrington B, Lobert S. Effect of noscapine and vincristine combination ondemyelination and cell proliferation in vitro. Leuk Lymphoma 2008;49(8):1603-1609.
63. Weimer LH, Podwall D. Medication-induced exacerbation of neuropathy in Charcot Marie Tooth disease. Journal of the Neurological Sciences 2006;242(1-2):47-54.
64. Ajitsaria R, Reilly M, Anderson J. Uneventful administration of vincristine in Charcot-Marie- Tooth disease type 1X. Pediatr Blood Cancer 2008;50(4):874-876.
65. Dennison JB, Mohutsky MA, Barbuch RJ, Wrighton SA, Hall SD. Apparent high CYP3A5 expression is required for significant metabolism of vincristine by human cryopreserved hepatocytes. J Pharmacol Exp Ther 2008;327(1):248-257.
66. Siddik ZH. Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treat Res 2002;112:263-284.
67. Brock P, Bellman S. Ototoxicity of cisplatinum. Br J Cancer 1991;63(1):159-160.
68. McWhinney SR, Goldberg RM, McLeod HL. Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 2009;8(1):10-16.
69. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci 2007;334(2):115-124.
70. Helbekkmo N, Sundstrom SH, Aasebo U, et al. Vinorelbine/carboplatin vs. gemcitabine/carboplatin in advanced NSCLC shows similar efficacy, but different impact of toxicity. Br J Cancer 2007;97 (3):283-289.
71. Brock PR, Yeomans EC, Bellman SC, Pritchard J. Cisplatin therapy in infants: short and longterm morbidity. Br J Cancer 1992;18:S36-40.
72. Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer 2004;40(16):2445-2451.
73. Coradini PP, Cigana L, Selistre SG, Rosito LS, Brunetto AL. Ototoxicity from cisplatin therapy in childhood cancer. J Ped Hem Oncol 2007;29(6):355-360.
74. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Onc 2005;23(34):8588-8596.
75. Bokemeyer C, Berger CC, Hartmann JT, et al. Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer. Br J Cancer 1998;77(8):1355-1362.
76. Kushner BH, Budnick A, Kramer K, Modak S, Cheung NK. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer 2006;107(2):417-422.
77. Schaefer SD, Post JD, Close LG, Wright CG. Ototoxicity of low- and moderate-dose cisplatin. Cancer 1985;56(8):1934-1939.
78. Blakley BW, Gupta AK, Myers SF, Schwan S. Risk factors for ototoxicity due to cisplatin. Arch Otolaryngol 1994;120(5):541-546.
79. McHaney VA, Thibadoux G, Hayes FA, Green AA. Hearing loss in children receiving cisplatin chemotherapy. J Pediatr 1983;102(2):314-317.
80. Bess FH, Dodd-Murphy J, Parker RA. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear Hear 1998;19(5):339-354.
81. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007;7(8):573-584.
82. Ekborn A, Laurell G, Andersson A, Wallin I, Eksborg S, Ehrsson H. Cisplatin-induced hearing loss: influence of the mode of drug administration in the guinea pig. Hear Res 2000;140(1-2):38-44.
83. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 2007;226(1-2):157-167.
84. Peters U, Preisler-Adams S, Hebeisen A, et al. Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs 2000;11(8):639-643.
85. Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD. Cisplatin-induced longterm hearing impairment is associated with specific glutathione S-transferase genotypes in testicular cancer survivors. J Clin Onc 2007;25(6):708-714.
86. Ishimoto TM, Ali-Osman F. Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenetics 2002; 12(7):543-553.
87. Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 2002;277(1):618-622.
88. Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary nonsyndromic sensorineural deafness. Nature 1997;387(6628):80-83.
89. Estivill X, Fortina P, Surrey S, et al. Connexin- 26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998;351(9100):394-398.
90. Caronia D, Patino-Garcia A, Milne RL, et al. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J 2009;9(5):347-353.
91. Dolan ME, Newbold KG, Nagasubramanian R, et al. Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res 2004;64(12):4353-4356.
92. Huang RS, Duan S, Shukla SJ, et al. Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet 2007;81(3):427-437.
93. Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME. Susceptibility loci involved in cisplatininduced cytotoxicity and apoptosis. Pharmacogenet Genomics 2008;18(3):253-262.
94. Ross CJ, Katzov-Eckert H, Dube MP, et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 2009;41(12):1345-1349.
95. van Dalen EC, van der Pal HJ, Kok WE, Caron HN, Kremer LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 2006;42(18): 3191-3198.
96. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979;91(5):710-717.
97. Kremer LC, van Dalen EC, OffringaM, Voute PA. Frequency and risk factors of anthracyclineinduced clinical heart failure in children: a systematic review. Ann Oncol 2002;13(4):503- 512.
98. Lipshultz SE, Colan SD, Gelber RD, Perez- Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991;324 (12):808-815.
99. Cohn JN. Prognosis in congestive heart failure. J Card Fail 1996;2(4 Suppl):S225-229.
100. Silber JH, Jakacki RI, Larsen RL, Goldwein JW, Barber G. Increased risk of cardiac dysfunction after anthracyclines in girls. Med Pediatr Oncol 1993;21(7):477-479.
101. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56(2): 185-229.
102. Dell'Acqua G, Polishchuck R, Fallon JT, Gordon JW. Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Hum Gene Ther 1999;10(8):1269-1279.
103. van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a Pglycoprotein. Br J Cancer 1999;79(1):108-113.
104. Kang YJ, Chen Y, Epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 1996;271(21):12610-12616.
105. Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK. The protective role of manganese superoxide dismutase against adriamycininduced acute cardiac toxicity in transgenic mice. J Clin Invest 1996;98(5):1253-1260.
106. Olson LE, Bedja D, Alvey SJ, Cardounel AJ, Gabrielson KL, Reeves RH. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res 2003; 63(20):6602-6606.
107. Forrest GL, Gonzalez B, Tseng W, Li X, Mann J. Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 2000;60(18):5158-5164.
108. Huang RS, Duan S, Kistner EO, et al. Genetic variants contributing to daunorubicin-induced cytotoxicity. Cancer Res 2008;68(9):3161-3168.
109. Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005;112 (24):3754-3762.
110. Blanco JG, Leisenring WM, Gonzalez- Covarrubias VM, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracyclinerelated congestive heart failure after childhood cancer. Cancer 2008;112(12):2789-2795.
111. Rajic V, Aplenc R, Debeljak M, et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma 2009;50 (10):1693-1698.
112. Rossi D, Rasi S, Franceschetti S, et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 2009;23(6):1118-1126.
113. Athale UH, Chan AK. Thrombosis in children with acute lymphoblastic leukemia Part III. Pathogenesis of thrombosis in children with acute lymphoblastic leukemia: effects of host environment. Thromb Res 2003;111(6):321-327.
114. Journeycake JM, Buchanan GR. Catheter-related deep venous thrombosis and other catheter complications in children with cancer. J Clin Oncol 2006;24(28):4575-4580.
115. Paz-Priel I, Long L, Helman LJ, Mackall CL, Wayne AS. Thromboembolic events in children and young adults with pediatric sarcoma. J Clin Oncol 2007;25(12):1519-1524.
116. Streif W, Andrew M, Marzinotto V, et al. Analysis of warfarin therapy in pediatric patients: A prospective cohort study of 319 patients. Blood 1999;94(9):3007-3014.
117. Monagle P, Chalmers E, Chan A, et al. Antithrombotic therapy in neonates and children: American College of Chest Physicians Evidence- Based Clinical Practice Guidelines (8th Edition). Chest 2008;133(6 Suppl):887S-968S.
118. Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997;7(5):361-367.
119. Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005;352(22):2285-2293.
120. Gonzalez Della Valle A, Khakharia S, Glueck CJ, et al. VKORC1 variant genotypes influence warfarin response in patients undergoing total joint arthroplasty: a pilot study. Clin Orthop Relat Res 2008;467(7):1773-1780.
121. Takeuchi F, McGinnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009; 5(3):e1000433.
122. McWilliam A, Lutter R, & Nardinelli, C. Health care savings from personalizing medicine using genetic testing: the case of warfarin. American Enterprise Institute-Brookings Joint Center, Working Paper. 2006;06-23.
123. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood 1992;80(8):1998-2005.
124. Thornburg CD, Jones E, Bomgaars L, Gage BF. Pediatric warfarin practice and pharmacogenetic testing. Thromb Res 2010;126(2):e144-146.
125. Nowak-Gottl U, Dietrich K, Schaffranek D, et al. In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood 2010;116(26): 6101-6105.
126. Cheng KK. Association of plasma methotrexate, neutropenia, hepatic dysfunction, nausea/vomiting and oral mucositis in children with cancer. European Journal of Cancer Care 2008;17(3): 306-311.
127. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002;100(10):3832-3834.
128. Shimasaki N, Mori T, Samejima H, et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on highdose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 2006;28(2):64-68.
129. Robaey P, Krajinovic M, Marcoux S, Moghrabi A. Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy. Dev Disabil Res Rev 2008;14(3):211-220.
130. Jaksic W, Veljkovic D, Pozza C, Lewis I. Methotrexate-induced leukoencephalopathy reversed by aminophylline and high-dose folinic acid. Acta Haematol 2004;111(4):230-232.
131. Ziereisen F, Dan B, Azzi N, Ferster A, Damry N, Christophe C. Reversible acute methotrexate leukoencephalopathy: atypical brain MR imaging features. Pediatr Radiol 2006;36(3):205-212.
132. Reddick WE, Glass JO, Helton KJ, Langston JW, Li CS, Pui CH. A quantitative MR imaging assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. AJNR Am J Neuroradiol 2005;26(9):2371-2377.
133. Reddick WE, Glass JO, Helton KJ, et al. Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 2005;26 (5):1263-1269.
134. Cole PD, Beckwith KA, Vijayanathan V, Roychowdhury S, Smith AK, Kamen BA. Folate homeostasis in cerebrospinal fluid during therapy for acute lymphoblastic leukemia. Pediatr Neurol 2009; 40(1):34-41.
135. Linnebank M, Moskau S, Jurgens A, et al. Association of genetic variants of methionine metabolism with methotrexate-induced CNS white matter changes in patients with primary CNS lymphoma. Neuro Oncol 2009;11(1):2-8.
136. Muller J, Kralovanszky J, Adleff V, et al. Toxic encephalopathy and delayed MTX clearance after high-dose methotrexate therapy in a child homozygous for the MTHFR C677T polymorphism. Anticancer Res 2008;28(5B):3051-3054.
137. Linnebank M, Malessa S, Moskau S, et al. Acute methotrexate-induced encephalopathy--causal relation to homozygous allelic state for MTR c.2756A>G (D919G)? J Chemother 2007;19(4): 455-457.
138. Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002;62(11):3144-3150.
139. Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001;61(19):7225-7232.
140. Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB. The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 2003; 98(7):1531-1539.
141. Gibson RJ, Bowen JM, Keefe DM. Technological advances in mucositis research: new insights and new issues. Cancer Treat Rev 2008;34(5):476-482.
142. Epstein JB. Mucositis in the cancer patient and immunosuppressed host. Infect Dis Clin North Am 2007;21(2):503-522, vii.
143. de Koning BA, van Dieren JM, Lindenbergh- Kortleve DJ, et al. Contributions of mucosal immune cells to methotrexate-induced mucositis. Int Immunol 2006;18(6):941-949.
144. Leblond J, Le Pessot F, Hubert-Buron A, et al. Chemotherapy-induced mucositis is associated with changes in proteolytic pathways. Exp Biol Med (Maywood) 2008;233(2):219-228.
145. Stringer AM, Gibson RJ, Bowen JM, Keefe DM. Chemotherapy-induced modifications to gastrointestinal microflora: evidence and implications of change. Curr Drug Metab 2009;10(1):79-83.
146. Ulrich CM, Yasui Y, Storb R, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001;98(1):231- 234.
147. Ruiz-Arguelles GJ, Coconi-Linares LN, Garces- Eisele J, Reyes-Nunez V. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico. Hematology 2007;12(5):387-391.
148. Muszynska-Roslan K, Konstantynowicz J, Panasiuk A, Krawczuk-Rybak M. Is the treatment for childhood solid tumors associated with lower bone mass than that for leukemia and Hodgkin disease? Pediatr Hematol Oncol 2009;26(1):36-47.
149. Rehman Q, Lane NE. Effect of glucocorticoids on bone density. Med Pediatr Oncol 2003;41(3):212-216.
150. Lafage-Proust MH, Boudignon B, Thomas T. Glucocorticoid-induced osteoporosis: pathophysiological data and recent treatments. Joint Bone Spine 2003;70(2):109-118.
151. McDonough AK, Curtis JR, Saag KG. The epidemiology of glucocorticoid-associated adverse events. Curr Opin Rheumatol 2008;20(2):131-137.
152. Koch B, Sakly M, Lutz-Bucher B, Briaud B. Glucocorticoid binding and control ACTH secretion. J Physiol (Paris) 1981;77(8):923-933.
153. McMahon SK, Pretorius CJ, Ungerer JP, et al. Neonatal complete generalized glucocorticoid resistance and growth hormone deficiency caused by a novel homozygous mutation in Helix 12 of the ligand binding domain of the glucocorticoid receptor gene (NR3C1). The Journal of Clinical Endocrinology and Metabolism 2010;95(1):297-302.
154. Sanchez-Vega B, Gandhi V. Glucocorticoid resistance in a multiple myeloma cell line is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1). Br J Haematol 2009;144(6):856-864.
155. Bray PJ, Cotton RG. Variations of the human glucocorticoid receptor gene (NR3C1): pathological and in vitro mutations and polymorphisms. HumMutat 2003;21(6):557-568.
156. Stevens A, Ray DW, Zeggini E, et al. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. The Journal of Clinical Endocrinology and Metabolism 2004;89(2): 892-897.
157. Huizenga NA, Koper JW, De Lange P, et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. The Journal of Clinical Endocrinology and Metabolism 1998;83(1):144-151.
158. Wall AM, Rubnitz JE. Pharmacogenomic effects on therapy for acute lymphoblastic leukemia in children. Pharmacogenomics J 2003;3(3):128-135.
159. Leung DY, Bloom JW. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2003;111(1):3-22; quiz 23.
160. Weiss ST, Litonjua AA, Lange C, et al. Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J 2006;6(5):311-326.
161. Van Cromphaut SJ, Stockmans I, Torrekens S, Van Herck E, Carmeliet G, Bouillon R. Duodenal calcium absorption in dexamethasonetreated mice: functional and molecular aspects. Arch Biochem Biophys 2007;460(2):300-305.
162. Bailey R, Cooper JD, Zeitels L, et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes 2007;56(10):2616-2621.
163. Patschan D, Loddenkemper K, Buttgereit F. Molecular mechanisms of glucocorticoidinduced osteoporosis. Bone 2001;29(6):498-505.
164. Nelson MR, Bacanu SA, Mosteller M, et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 2008;9(1):23-33.
165. Hung SI, Chung WH, Liou LB, et al. HLAB* 5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005;102(11):4134-4139.
166. Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359(9312):1121-1122.
167. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359 (9308):727-732.
168. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008;359(8):789-799.
169. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of nonsmall- cell lung cancer to gefitinib. N Engl J Med 2004;350(21): 2129-2139.
170. Szoeke CE, Newton M, Wood JM, et al. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol 2006;5(2):189-196.
171. Manolio TA, Rodriguez LL, Brooks L, et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 2007;39(9):1045-1051.
172. Carleton B, Poole R, Smith M, et al. Adverse drug reaction active surveillance: developing a national network in Canada's children's hospitals. Pharmacoepidemiol Drug Saf 2009;18(8):713-721.
173. Ross CJ, Visscher H, Sistonen J, et al. The Canadian pharmacogenomics network for drug safety: a model for safety pharmacology. Thyroid 2010;20(7):681-687.
174. Carleton B. Demonstrating utility of pharmacogenetics in pediatric populations: methodological considerations. Clin Pharmacol Ther 2010;88(6):757-759.

Most read articles by the same author(s)