Effective biotransformation of benzaldehyde to a stable L-PAC using calcium alginate entrapped pyruvate decarboxylase of an auxotrophic Saccharomyces cerevisiae
Main Article Content
Keywords
Saccharomyces cerevisiae, L-phenylacetylcarbinol, Biotransformation, Benzaldehyde, Calcium alginate entrapment
Abstract
The present study deals with the effective biotransformation of benzaldehyde to a stable L-PAC using calcium alginate entrapped pyruvate decarboxylase of an auxotrophic Saccharomyces cerevisiae via submerged fermentation. The wild-type of Saccharomyces cerevisiae ISL-7 was mutagenised using UV radiations. Significant increase in L-PAC production was found as compared to wild-type. Out of 29 mutants, UV-t6 was selected for maximum L-PAC production after primary and secondary screening. The auxotrophic mutant UV-t6 resulted in 1.25fold increase in L-PAC activity than wild-type ISL-7 when exposed to UV radiations. The effect of different benzaldehyde concentrations and incubation time on production of L-PAC was also studied. The maximum PDC activity 95.99±5.7 U/ml and L-PAC activity 22.46±1.34 g/l was observed after 4 h of incubation at 28ºC for 60 µl benzaldehyde concentration. The selected mutant strain UV-t6also showed maximum L-PAC production with better L-PAC fermentation kinetics as compared to wild-type ISL-7. The PDC of auxotrophic mutant strain of Saccharomyces cerevisiae UV-t6 was immobilized using calcium alginate beads. The effect of enzyme concentration, bead size and cell holding time on L-PAC activity was also studied. The immobilized enzyme exhibited maximum PDC and L-PAC activity i.e. 116.22±8.13 U/ml and 13.72±0.96g/l at enzyme concentration 1.5 ml as compared to free enzyme (PDC activity 115.20±8.06 U/ml and L-PAC activity 12.97±0.91 g/l). The maximum L-PAC activity was observed for bead size 3 mm i.e. 14.56±1.16 g/l along with cell holding time 10 min. This study revealed that auxotrophic mutant strain of Saccharomyces cerevisiae along with immobilized PDC exhibited 1.68fold increase in L-PAC production than wild-type.
References
Agarwal, S.C., C.M. Tripathi and S.K. Basu. 1997. Production of L-phenylacetylcarbinol by fermentation. J. Ferment. Bioeng., 84(6): 487-492.
Agarwal, S.C., S.K. Basu, V.C. Vora, J.R. Mason and S.J. Pirt. 1987. Studies on the production of L-phenylacetylcarbinol by yeast employing benzaldehyde as precursor. Biotechnol. Bioeng., 29: 783-785. Doi: org/10.1002/bit.260290621
Akhtar, N., M.M. Javed, S. Zahoor, M.E. Babar and I. Haq. 2014. Rapid isolation/selection of best yeast culture and its metabolic control for the biotransformation of benzaldehyde to 1-hydroxy-1- phenyl-2-propanone. Pak. J. Zool., 46(3): 783-787.
Akhter, N., M.A. Morshed, A. Uddin, F. Begum, T. Sultan and A.K. Azad. 2011. Production of pectinase by Aspergillus niger cultured in solid state media. Int. J. Biosci., 1(1): 33-42.
Arnold, L.D. and J.L. Adrio. 2008. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation In: Natural Compound as Drugs, Vol. 1; Publisher Birkhauser Basel. pp. 251-289.Doi: 10.1007/978-3-7643-8117-2_7
Astrup, A., L. Breum and S. Toubro. 1995. Pharmacological and clinical studies of ephedrine and other thermogenic agonists. Obes. Res. Suppl., 4: 537-540. Doi: 10.1002/j.1550-8528.1995.tb00224.x
Astrup, A. and S. Toubro. 1993. Thermogenic, metabolic, and cardiovascular responses to ephedrine and caffeine in man. Int. J. Obes. Relat. Metab. Disord., 17(1): 41-43.
Astrup, A., L. Breum, S. Toubro, P. Hein and F. Quaade. 1992. The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet: a double-blind trial. Int. J. Obes. Relat. Metab. Disord., 16: 269-277.
Barberio, C., L. Bianchi, F. Pinzauti, T. Lodi, I. Ferroro, M. Polsinelli and E. Casalone. 2007. Induction and characterization of morphologic mutants in a natural S. cerevisiae strain. Can. J. Microbiol., 53(2): 223-230. Doi: org/10.1139/W06-132
Becvarova, H., O. Hanc and K. Macek. 1963. Course of transformation of benzaldehyde by Saccharomyces cerevisiae. Folia Microbiol., 8: 165-169. Doi: 10.1007/BF02894975
Bell, D.G., I. Jacobs and J. Zamecnik. 1998. Effects of caffeine, ephedrine, and their combination on time to exhaustion during high-intensity exercise. Eur. J.Appl. Physiol. Occup. Physiol., 77: 427-433. Doi: 10.1007/s004210050355
Bringer-Meyer, S. and H. Sahm. 1988. Acetoin and phenylacetylcarbinol formation by pyruvate decarboxylase of Zymomonasmobilisand Saccharomyces carlsbergensis.Biocatal., 4: 321-331. Doi: org/10.3109/10242428808998172
Brusick, D. J. and V. W. Mayer. 1973. New developments in mutagenicity screening techniques with yeasts-environmental health perspectives. Volume 6. The evaluation of chemical mutagenicity data in relation to population risk. Proceedings of the Workshop held at Research Triangle Park, N. C., pp. 83-96.
Calfee R, Fadale P. 2006. Popular Ergogenic Drugs and Supplements in Young Athletes. Pediatrics, 117(3): 577-589. Doi: 10.1542/peds.2005-1429
Chipman, D., Z. Barak and V. Maria. 2006. Process for preparing chiral aromatic alpha-hydroxy ketones using 2-hydroxy-3-oxoacid synthase. EU Patent No. 1,468,101.
Culic, J., J. Netrval, S. Ulbrecht, J. Souhadra, V. Vojtisek and M. Vodansky. 1984. Method of D(-)-1-phenyl-1-phenyl-1-hydroxy-2-propanone for the preparation of L-(-)-ephedrine. Czech Patent No.222, 941.
Doostmohammadi, M., M.A. Asadollahi, I. Nahvi and D. Biria. 2016. L-phenylacetylcarbinol production by yeast petite mutants. Ann. Microbiol., 66: 1049-1055. Doi: 10.1007/s13213-015-1190-2
Dodd, S.L., R.A. Herb and S.K. Powers. 1993. Caffeine and exercise performance: an update. Sports Med., 15: 14-23. Doi: 10.2165/00007256-199315010-00003
Dorota, K., J. Berlowska and W. Ambroziak. 2013. Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate. Enzyme Microb. Technol., 53: 229-234.
Dulloo, A.G. 1993. Ephedrine, xanthines and prostaglandin-inhibitors: actions and interactions in the stimulation of thermogenesis. Int. J. Obes. Relat. Metab. Disord., 17(1): 35-40.
Gilson, C.D. andA. Thomas A. Ethanol production by alginate immobilized yeast in a fluidised bed bioreactor.J. Chem. Tech. Biotechnol., 62: 38-45.
Haller, C.A. and N.L. Benowitz. 2000. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloid. N. Engl. J. Med., 343: 1833-1838. Doi: 10.1056/NEJM200012213432502
Hauer, B., M. Breuer, P. Rogers, V. Sandford and B. Rosche. 2006. Process for production of R-phenylacetylcarbinol by an enzymatic process in two phase system. US Patent No. 7,074,966.
Hoffman, B.B. and R.J. Lefkowitz. 1996. Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon W, Gilman AG, editors. Goodman and Gilman's the pharmacological basis of therapeutics. 9th ed. New York, NY: McGraw Hill, pp. 199-248.
Hohmann, S. 1997. Pyruvate decarboxylases. In: yeast sugar metabolism (F.K. Zimmerman and K.-D. Entian, eds), pp. 187-211. Technomic, Lancaster, PA.
Hussain, M., I. Haq, S. Ali and M.A. Qadeer. 2012. Biosynthesis of L-phenylacetylcarbinol from locally isolated yeasts. Pak. J.Bot., 44(3): 1171-1174.
Iranmanesh, E., M.A. Asadollahi and B. Biria. 2019. Improving L-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering. J. Biotechnol., 308: 27-34. Doi: 10.1016/j.jbiotec.2019.11.008
Khan, M.A., I. Haq, M.M. Javed, M.A. Qadeer, N. Akhtar, S.A.I. Bokhari. 2012. Studies on the production of L-phenylacetylcarbinol by Candida utilis in shake flask. Pak. J. Bot., 44: 361-364.
Khan, T.R. and A.J. Daugulis. 2010. Application of solid–liquid TPPBs to the production of L-phenylacetylcarbinol from benzaldehyde using Candida utilis. Biotechnol. Bioeng., 107(4): 633-41. Doi: org/10.1002/bit.22839
Kostraby, M.M., A.J. Smallridge and M.A. Trewhella. 2002. Yeast‐mediated preparation of L‐PAC in an organic solvent. Biotechnol., Bioeng., 77(7): 827-831. Doi: 10.1002/bit.10117
Kumar, M.R., M.A. Chari and M.L. Narasu. 2006. Production of L-phenylacetylcarbinol (L-PAC) by different novel strains of yeasts in molasses and sugar cane juice as production medium. Res. J. Microbiol., 1: 433-437. Doi: 10.3923/jm.2006.433.437
Lawford, H.G. & Roseau, J.D. 1993. Mannose fermentation by ethanologenic recombinants of E. coli and kineticalaspects.Biotechnol.Lett.,15, 615-620.
Leksawasdi, N., Y.Y. Chow, M. Breuer, B. Hauer, B. Rosche and P.L. Rogers. 2004. Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process. J. Biotechnol., 111(2): 179-89.
Liew, M.K.H., A.G. Fane and P.L. Rogers. 1995. Applicability of continuous membrane bioreactor in production of phenylacetylcarbinol. J. Chem. Technol. Biot., 64: 200-206. Doi.org/10.1002/jctb.280640214
Liu, Y., G. Tortora, M.E. Ryan, H.M. Lee and L.M. Golub. 2002. Potato dextrose agar antifungal susceptibility testing for yeasts and molds: evaluation of phosphate effect on antifungal activity of CMT-3. Antimicrob. Agents. Chemother., 46: 1455-61. Doi: 10.1128/AAC.46.5.1455-1461
Long, A. and O. Ward. 1989. Biotransformation of benzaldehyde by Saccharomyces cerevisiae: characterization of the fermentation and toxicity effects of substrates and products. Biotechnol. Bioeng., 34: 933-941. Doi: 10.1002/bit.260340708
Maddison, D.R. and W.P. Maddison. 1996. The tree of life project. Zootaxa, 1668(1): 19-40
Mahmoud, W.M., A.M.M. El-Sayed and R.W. Coughlin. 1990. Effect of β-cyclodextrin on production of L-phenylacetylcarbinol by immobilized cells of Saccharomyces cerevisiae. Biotechnol. Bioeng., 36: 256-262. Doi: org/10.1002/bit.260360307
Mandwal, A.K., C.K.M. Tripathi, P.D. Trivedi, A.K. Joshi, S.C. Agarwal and V. Bihari. 2004. Production of L-phenylacetylcarbinol by immobilized cells of Saccharomyces cerevisiae. Biotechnol. Lett., 216: 217-221.
Maroney K.A.N., P.N. Culshaw, U.D. Wermuth and S.L. Cresswell. 2014. Investigation of the L-phenylacetylcarbinol process to substituted benzaldehydes of interest. Forensic Sci. Int., 235: 52-61. Doi: 10.1016/j.forsciint.2013.11.017
Martin, W.R., J.W. Sloan, J.D. Sapira and D.R. Jasinski. 1971. Physiologic, subjective, and behavioural effects of amphetamine, metamphetamine, ephedrine, phenmetrazine and methylphenidate in man. Clin. Pharmacol. Ther., 12: 245-258. Doi: org/10.1002/cpt1971122part1245
Miguez, M., P. Nunes, N. Azeredo, S.F. Padraza, M. Vasconcelos, O. Viana, M.A. Coelho and P. Amaral. 2012. Selection of yeasts for the production of L-phenylacetylcarbinol by biotransformation in Shake Flasks. Chem. Eng. Trans., 27: 163-168. Doi: 10.3303/CET1227028
Netrval, J., and V. Vojtisek. 1982. Production of phenylacetylcarbinol in various yeast species. Eur. J. appl. Microbiol. Biot., 16: 35-38. Doi: 10.1007/BF01008240
Nikolova, P. and O.P. Ward. 1994. Effect of support matrix on ratio of product to by-product formation in L-phenylacetylcarbinol synthesis. Biotechnol. Lett., 16: 7-10.
Nikolova, P. and O.P. Ward. 1992. Production of phenylacetylcarbinol by biotransformation using baker's yeast in two-phase systems. Biotechnol. Prog., 8: 675-680.
Nikolova, P., A. Long and O.P. Ward. 1991. Colorimetric determination of L- phenylacetylcarbinol produced by biotransformation of benzaldehyde and pyruvate using Saccharomyces cerevisiae. Biotechnol. Tech., 5(1): 31-34.Doi: org/10.1007/BF00152751
Oliver, A.L., B.N. Anderson and F.A. Roddick. 1999. Factors affecting the production of L-phenylacetylcarbinol by yeast: A case study. Adv. Microb. Physiol., 41: 1-45. Doi: 10.1016/s0065-2911(08)60164-2
Ostergaard, S., L. Olsson and J. Nielsen. 2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 64(1): 34-50. Doi: 10.1128/MMBR.64.1
Park, J.K. and K.D. Lee. 2001. Production of L-phenylacetylcarbinol (L-PAC) by encapsulated Saccharomyces cerevisiae cells. Korean J. Chem. Eng., 18(3): 363-370. Doi: 10.1007/BF02699179
Pasquali, R., F. Casimirri , N. Melchionda, G. Grossi, L. Bortoluzzi, A.M.M. Labate, C. Stefanini and A. Raitano. 1992. Effects of chronic administration of ephedrine during very-low-calorie diets on energy expenditure, protein metabolism and hormone levels in obese subjects. Clin. Sci., 82: 85-92. Doi: 10.1042/cs0820085
Pirt, S.J. (1975) Principles of microbes & cell cultivation. Black Wells Scientific, London, UK, pp. 16, 53-67, 114.
Pohl, M. 1997. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Adv. Biochem. Eng. Biotechnol., 58: 15-43. Doi: org/10.1007/BFb0103301
Rajoka, M.I., M. Ferhan and A. M. Khalid. 2005. Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. Lett. App. Microbiol., 40: 316-321.
Rogers, P.L., H.S. Shin and B. Wang. 1997. Biotransformation for L-ephedrine production. Adv. Biochem. Eng. Biotechnol., 56: 33–59 Doi: 10.1007/BFb0103029
Rosche, B., M. Breuer, B. Haue and P.L. Rogers. 2005. Role of pyruvate in enhancing pyruvate decarboxylase stability towards benzaldehyde. J. Biotechnol., 115(1): 91-99. Doi: 10.1016/j.jbiotec.2004.08.002
Santianegara, G., P.L. Rogers, B. Rosche, B. Hauer and M. Breuer. 2006. Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emulsion system with Candida utilis cells. Appl. Microbiol. Biotechnol., 70(2): 170-175.
Schmid, A., J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and B. Witholt. 2001. Industrial biocatalysis today and tomorrow.Nature, 409: 258-268. Doi: 10.1038/35051736
Seely, R.J., Hageman R.V. Hageman, M.J. Yarius and S.A. Sullivan. 1989. Process for preparing microorganisms used for making phenylacetylcarbinol (PAC). US patent PCT/US 89/04423.
Seifi, M.M., E. Iranmanesh, M.A. Asadollahi and A. Arpanaei. 2020. Biotransformation of benzaldehyde into L-phenylacetylcarbinol using magnetic nanoparticles-coated yeast cells. Biotechnol. Lett., 42: 597-603. Doi: 10.1007/s10529-020-02798-0
Shin, H.S. and P.L. Rogers. 1996. Kinetic evaluation of biotransformation of benzaldehyde to L‐phenylacetylcarbinol by immobilized pyruvate decarboxylase from Candida utilis. Biotechnol. Bioeng., 49(4): 429-436. Doi: 10.1002/(SICI)1097-0290(19960220)49:4<429::AID-BIT10>3.0.CO;2-5
Shin, H.S. and P.L. Rogers. 1995. Biotransformation of benzeldehyde to L-phenylacetylcarbinol, an intermediate in L-ephedrine production by immobilized Candida utilis. Appl. Microbiol. Biotechnol., 44: 7-14. Doi: org/10.1007/BF00164473
Shukla, V.B. and P.R. Kulkarni. 2003. Comparative studies on bioconversion of benzaldehyde to L‐phenylacetylcarbinol (L‐PAC) using calcium alginate‐ and barium alginate‐immobilized cells of Torulasporadelbrueckii. J. Chem. Technol. Biotechnol., 78(9): 949-951.
Shukla, V.B., V.R. Madyar, B.M. Khadilkar and P.R. Kulkarni. 2002. Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) by Torulasporadelbrueckiiand conversion to ephedrine by microwave radiation. J. Chem. Technol. Biotechnol., 77: 137-140. Doi: org/10.1002/jctb.534
Shukla, V.B. and P.R. Kulkarni. 2002. Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) by free cells of Torulasporadelbrueckii in presence of Beta-Cyclodextrin. Braz. Arch. Biol. Technol., 45(3): 265-268. Doi.org/10.1590/S1516-89132002000300003
Shukla, V.B. and P.R. Kulkarni. 2000. L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications.World J. Microb. Biot., 16:499-506.
Smallridge, A.J., M.A. Trewhella and M.M.D. Guidice. 2001. Yeast-based process for production of L-PAC. US Patent No. 6271008 B1.
Snedecor, G.W. & Cochran, W.G. 1980. Statistical Methods, 7th Edition, Iowa State University, pp. 32-43.
Suresh, K., N. Mathiyazhagan and R. Selvam. 2015. Optically active intermediate of pyruvate decarboxylase to phenylacetylcarbinol and analysis of enantiomeric purity. Int. J. Curr. Res. Chem. Pharma. Sci., 2(7): 1-7.
Shukla, V.B. and P.R. Kulkarni. 2000. L-phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications. World J. Microb. Biot., 16: 499-506.
Stinson, S.C. 1993. Chiral drugs. Chemical engineering news (September), 27: 38-65. Doi: org/10.1021/cen-v070n039.p046
Toubro, S., A. Astrup, L. Breum and F. Quaade. 1993. The acute and chronic effects of ephedrine/caffeine mixtures on energy expenditure and glucose metabolism in humans. Int. J. Obes. Relat. Metab. Disord., 17(3): 73-77.
Theoharides, T.C. 1997. Sudden death of a healthy college student related to ephedrine toxicity from a ma huang-containing drink. J. Clin. Psychopharmacol., 17: 437-439.Doi: 10.1097/00004714-199710000-00025
Tripathi C.M., S.C. Agarwal and S.K. Basu. 1997. Production of L-phenylacetylcarbinol by fermentation. J.Ferment. Bioeng., 84(6): 487-492. Doi: org/10.1016/S0922-338X(97)81900-9
Voets, J.P., E.J. Vandamme and C. Vlerick. 1973. Some aspects of the phenylacetylcarbinol biosynthesis by Saccharomyces cerevisiae. Z. Allg. Mikrobiol., 13: 355-366. Doi: org/10.1002/jobm.19730130410
Wang, Z., R. Liang, J-He. Xu, Y. Liu and H. Qi. 2010. A closed concept of extractive whole cell microbial transformation of benzaldehyde into L-phenylacetylcarbinol by Saccharomyces cerevisiae in novel polyethylene-glycol-induced cloud-point system. Appl. Biochem. Biotechnol., 160: 1865-1877. Doi: 10.1007/s12010-009-8695-8
Wang, Z., J-He. Xu, R. Liang and H. Qi. 2008. A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biocehm. Eng. J., 41(1): 24-29. Doi: org/10.1016/j.bej.2008.03.002
Weesner, K.M., M. Denison and R.J. Roberts. 1982. Cardiac arrhythmias in an adolescent following ingestion of an over-the-counter stimulant. Clin. Pediatr., 21: 700-701. Doi: 10.1177/000992288202101112
White, L.M., S.F. Gardner, B.J. Gurley, M.A. Marx, P.L. Wang and M. Estes. 1997. Pharmacokinetics and cardiovascular effects of ma-huang (Ephedra sinica) in normotensive adults. J. Clin. Pharmacol., 37: 116–122. Doi: 10.1002/j.1552-4604.1997.tb04769.x
Zhang, W., Z. Wang, W. Li, B. Zhuang and H. Qi. 2008. Production of L-phenylacetylcarbinol by microbial transformation in polyethylene glycol-induced cloud point system. Appl. Microbiol. Biotechnol., 78: 233-239. Doi: 10.1007/s00253-007-1304-2