IN-SILICO ANALYSIS OF P.LYS131ASN MISSENSE-DONOR LOSS VARIANT IN MINAR2

Main Article Content

Mangesh Deokar
Nitu Singh

Keywords

Autosomal recessive, deafness, hearing loss, MINAR2, NOTCH2, In-silico analysis of MINAR2 variant, p.Lys131Asn

Abstract

In-silico analysis of underlying variants ensures the fact that the variant is pathogenic, and on top of it, this assists scientists and clinicians reach conclusion on the basis of guidelines provided by American College of Medical Genetics and Genomics. Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report in-silico analysis of a variant in MINAR2 (membrane integral NOTCH2-associated receptor) underlying autosomal recessive non-syndromic deafness. MINAR2 is a recently annotated gene with limited functional understanding. We have reported three MINAR2 variants, p.Trp48*, p.Arg138Valfs*10, and p.Lys131Asn previously, in 13 individuals with congenital or prelingual-onset severe to profound sensorineural hearing loss in recent past. The p.Lys131Asn variant is shown to disrupt a splice donor site. Here, we conclude that MINAR2 is essential for hearing in humans and its disruption leads to sensorineural hearing loss. In-silico analysis of MINAR2 variant p.Lys131Asn corroborates our previously reported findings and supports the fact that deleterious variants in MINAR2 underlie inherited non-syndromic hearing loss and MINAR2 plays an important role in normal hearing and development.


This in-silico work aims to determine whether mutation in MINAR2 protein affects the activity and stability of the protein, and also determines the pathogenicity of the p.Lys131Asn variant in MINAR2. Prediction of pathogenicity of variant will reveal if the mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.

Abstract 91 | pdf Downloads 60

References

1) Mehl AL, and Thomson V. The Colorado newborn hearing screening project, 1992-1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics. 2002;109(1):E7.
2) Morton CC, and Nance WE. Newborn hearing screening--a silent revolution. N Engl J Med. 2006;354(20):2151-64.
3) Van Camp G, Smith RJH. Hereditary Hearing Loss Homepage. https://hereditaryhearingloss. org.(December, 2021.).
4) Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, et al. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014;16(4):347-55.
5) Korver AM, Smith RJ, Van Camp G, Schleiss MR, Bitner-Glindzicz MA, Lustig LR, et al. Congenital hearing loss. Nat Rev Dis Primers. 2017;3:16094.
6) Bademci G, Foster J, 2nd, Mahdieh N, Bonyadi M, Duman D, Cengiz FB, et al. Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genet Med. 2015.
7) Doll J, Vona B, Schnapp L, Ruschendorf F, Khan I, Khan S, et al. Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families. Genes (Basel). 2020;11(11).
8) Sloan-Heggen CM, Babanejad M, Beheshtian M, Simpson AC, Booth KT, Ardalani F, et al. Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. J Med Genet. 2015;52(12):823-9.
9) Yan D, Tekin D, Bademci G, Foster J, 2nd, Cengiz FB, Kannan-Sundhari A, et al. Spectrum of DNA variants for non-syndromic deafness in a large cohort from multiple continents. Hum Genet. 2016;135(8):953-61.
10) Atik T, Bademci G, Diaz-Horta O, Blanton S, and Tekin M. Whole-exome sequencing and its impact in hereditary hearing loss Genet Res (Camb). 2015.
11) Ingham NJ, Pearson SA, Vancollie VE, Rook V, Lewis MA, Chen J, et al. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol. 2019;17(4):e3000194.
12) Vona B, Nanda I, Hofrichter MA, Shehata-Dieler W, and Haaf T. Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol Cell Probes. 2015;29(5):260-70.
13) Ho RX, Amraei R, De La Cena KOC, Sutherland EG, Mortazavi F, Stein T, et al. Loss of MINAR2 impairs motor function and causes Parkinson's disease-like symptoms in mice. Brain Commun. 2020;2(1):fcaa047.
14) Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43.
15) Bademci G, Abad C, Incesulu A, Elian F, Reyahi A, Diaz-Horta O, et al. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet. 2019;28(8):1286-97.
16) Li C, Bademci G, Subasioglu A, Diaz-Horta O, Zhu Y, Liu J, et al. Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc Natl Acad Sci U S A. 2019;116(4):1347-52.
17) DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491-8.
18) Li H, and Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589-95.
19) McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-303.
20) Jelani M, Dooley HC, Gubas A, Mohamoud HSA, Khan MTM, Ali Z, et al. A mutation in the major autophagy gene, WIPI2, associated with global developmental abnormalities. Brain. 2019;142(5):1242-54.
21) Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901-13.
22) Gelfman S, Wang Q, McSweeney KM, Ren Z, La Carpia F, Halvorsen M, et al. Annotating pathogenic non-coding variants in genic regions. Nat Commun. 2017;8(1):236.
23) Quang D, Chen Y, and Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31(5):761-3.
24) Rentzsch P, Witten D, Cooper GM, Shendure J, and Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D94.
25) Reese MG, Eeckman FH, Kulp D, and Haussler D. Improved splice site detection in Genie. J Comput Biol. 1997;4(3):311-23.
26) Shapiro MB, and Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15(17):7155-74.
27) Yeo G, and Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2-3):377-94.
28) Carpentier G, Berndt S, Ferratge S, Rasband W, Cuendet M, Uzan G, et al. Angiogenesis Analyzer for ImageJ - A comparative morphometric analysis of "Endothelial Tube Formation Assay" and "Fibrin Bead Assay". Sci Rep. 2020;10(1):11568.
29) Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
30) Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional efect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet 76:1. https://doi.org/10.1002/ 0471142905.hg0720s76
31) Sim N-L, Kumar P, Hu J, Henikof S, Schneider G, Ng PC (2012) SIFT web server: predicting efects of amino acid substitutions on proteins. Nucleic Acids Res. 40(W1):W452–W457. https://doi.org/10.1093/nar/gks539
32) Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional efect of amino acid substitutions and indels. PLoS One 7(10):e46688. https://doi.org/10.1371 /journal.pone.0046688
33) Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional efect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747. https://doi.org/10.1093/ bioinformatics/btv195
34) Choi Y (2012) A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein, in Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine - BCB. 12:414–417. https://doi.org/ 10.1145/ 2382936.2382989
35) Shihab HA et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34(1):57–65. https://doi.org/10.1002/humu.22225
36) Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39(17):e118–e118. https://doi.org/ 10.1093/nar/gkr407
37) Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310. https://doi.org/10.1093/nar/gki375
38) Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. 1132(2005):1125–1132. https://doi.org/10.1002 /prot.20810
39) Chen C-W, Lin J, Chu Y-W (2013) iStable: of-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics 14(S2):S5. https://doi.org/10.1186/1471-2105-14-S2-S5
40) Li G, Panday SK, Alexov E (2021) SAAFEC-SEQ: a sequence-based method for predicting the efect of single point mutations on protein thermodynamic stability. Int. J. Mol. Sci. 22(2):606. https://doi.org/10.3390/ijms2 2020606
41) Worth CL, Preissner R, Blundell TL (2011) SDM--a server for predicting efects of mutations on protein stability and malfunction. Nucleic Acids Res. 39(suppl):W215–W222. https://doi.org/ 10.1093/nar/gkr363
42) Pires DEV, Ascher DB, Blundell TL (2014) DUET : a server for predicting efects of mutations on protein stability using an integrated computational approach. 42:314–319. https://doi.org/ 10.1093/nar/gku411
43) Pires DEV, Ascher DB, Blundell TL (2014) Structural bioinformatics mCSM : predicting the efects of mutations in proteins using graph-based signatures. 30(3):335–342. https://doi.org/ 10.1093/bioinformatics/btt691