FROM CONCEPTION TO CURES: A REVIEW OF THE REMARKABLE JOURNEY OF SELF- RENEWING PLURIPOTENT STEM CELLS IN HUMAN EMBRYOLOGY

Main Article Content

Dr Suyashi
Dr Shilpi Gupta Dixit
Dr Surajit Ghatak

Keywords

Pluripotent stem cells, Human embryology, Tissue formation, Signaling pathways, Therapeutic applications, Developmental milestones

Abstract

This comprehensive review traces the trajectory of pluripotent stem cells from embryonic origins to therapeutic applications. Examining the intricate journey of self-renewing pluripotent stem cells in human embryology, the article explores key developmental milestones and their clinical implications. From the early stages of conception to the realization of cures, the dynamic capabilities of pluripotent stem cells are dissected, emphasizing their role in tissue formation and regeneration. The review delves into essential signaling pathways orchestrating pluripotent stem cell-mediated embryonic tissue development. Bridging the gap between embryonic origins and clinical cures, the article navigates through the remarkable evolution of pluripotent stem cell research

Abstract 36 | pdf Downloads 27

References

1. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145-1147.
2. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861-872.
3. Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13(5), 497-505.
4. Romito, A., & Cobellis, G. (2016). Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 1–20. https://doi.org/10.1155/2016/9451492
5. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676.
6. Till, J. E., & McCulloch, E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14(2), 213–222.
7. Tang, F., et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6(5), 377–382.
8. Prelle, K., ZINK, N., & Wolf, E. (2002, June). Pluripotent Stem Cells – Model of Embryonic Development, Tool for Gene Targeting, and Basis of Cell Therapy. Anatomia, Histologia, Embryologia, 31(3), 169–186. https://doi.org/10.1046/j.1439-0264.2002.00388.x
9. Heemskerk, I., & Warmflash, A. (2016, August 25). Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Developmental Dynamics, 245(10), 976–990. https://doi.org/10.1002/dvdy.24432
10. Baillie-Benson, P., Moris, N., & Martinez Arias, A. (2020, October). Pluripotent stem cell models of early mammalian development. Current Opinion in Cell Biology, 66, 89–96. https://doi.org/10.1016/j.ceb.2020.05.010
11. Pera MF, Rossant J. The exploration of pluripotency space: Charting cell state transitions in peri-implantation development. Cell Stem Cell. 2021;28:1896–906.
12. Wang, X., Hu, G. Human embryos in a dish – modeling early embryonic development with pluripotent stem cells. Cell Regen 11, 4 (2022). https://doi.org/10.1186/s13619-022-00107-w
13. Tam, P. P., & Loebel, D. A. (2007). Gene function in mouse embryogenesis: get set for gastrulation. Nature Reviews Genetics, 8(5), 368–381.
14. Massagué, J. (2012). TGFβ signalling in context. Nature Reviews Molecular Cell Biology, 13(10), 616–630.
15. Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15(23), 3059–3087.
16. Dessaud, E., McMahon, A. P., & Briscoe, J. (2008). Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development, 135(15), 2489–2503.
17. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.
18. Louvi, A., & Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nature Reviews Neuroscience, 7(2), 93–102.
19. Hoodless, P. A., Haerry, T., Abdollah, S., Stapleton, M., O'Connor, M. B., Attisano, L., & Wrana, J. L. (1996). MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell, 85(4), 489–500.
20. Hogan, B. L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes & Development, 10(13), 1580–1594.
21. Ornitz, D. M., & Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 4(3), 215–266.
22. Itoh, N., & Ornitz, D. M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. Journal of Biochemistry, 149(2), 121–130.
23. Boyer, L. A., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956.
24. Reik, W., et al. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089–1093.
25. Bernstein, B. E., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2), 315–326.
26. Sato, N., et al. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.
27. Vallier, L., et al. (2004). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 117(7), 7375–7386.
28. Burdon, T., et al. (1999). The end of epidermal growth factor signaling generates a repulsive guidance cue for migratory neural crest cells. Genes & Development, 13(7), 804–816.
29. ten Berge, D., et al. (2011). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3(5), 508–518.
30. Tam, P. P., & Loebel, D. A. (2007). Gene function in mouse embryogenesis: get set for gastrulation. Nature Reviews Genetics, 8(5), 368–381.
31. Gilbert, S. F. (2000). Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates. Chapter 10, Gastrulation and the Formation of the Germ Layers.
32. Slack, J. M. W. (1991). From Egg to Embryo: Regional Specification in Early Development. Cambridge: Cambridge University Press. Chapter 8, Gastrulation in Amphibians.
33. Laflamme, M. A., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.
34. Hargus, G., et al. (2014). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences, 111(3), 11821–11826.
35. Mandai, M., et al. (2017). Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 376(11), 1038–1046.
36. Daley, G. Q. (2019). Stem Cells: Roadmap to the Clinic. The Journal of Clinical Investigation, 129(4), 1460–1462