IN DEPTH ANALYSIS OF BRAIN STRUCTURE OF MULTIPLE SCLEROSIS PATIENT THROUGH MAGNETIC RESONANCE IMAGING
Main Article Content
Keywords
Multiple sclerosis, magnetic resonance imaging, brain structure, demyelinating lesions, clinical manifestations
Abstract
Introduction: Multiple sclerosis (MS) is a complex neurological disorder characterized by inflammation, demyelination, and neurodegeneration within the central nervous system (CNS). Magnetic resonance imaging (MRI) has emerged as a valuable tool for assessing structural changes in the brains of MS patients. This study aims to provide a comprehensive analysis of brain structure in MS patients using qualitative analysis of MRI reports. By exploring the dynamic nature of demyelinating lesions and their correlation with clinical manifestations, this research contributes to a deeper understanding of MS pathophysiology and informs personalized treatment strategies.
Objective: This study aims to conduct an in-depth analysis of brain structure in multiple sclerosis (MS) patients using magnetic resonance imaging (MRI) techniques, exploring the dynamic nature of demyelinating lesions and their relationship with clinical manifestations.
Methods: Fourteen MS patients underwent MRI scans, and their reports were analyzed using qualitative methods. Thematic analysis was employed to identify common patterns and themes in structural brain changes. Demographic data were also collected and analyzed.
Results: MRI reports revealed characteristic T2 and FLAIR hyperintense signal abnormalities in periventricular and subcortical white matter regions in all patients. The absence of acute pathologies and the dynamic nature of demyelinating lesions were notable findings. Subtle non-specific signal abnormalities and chronic microvascular ischemic changes were also observed. Limitations include a small sample size and cross-sectional design, necessitating caution in generalizing the findings.
Conclusion: Despite limitations, this study provides valuable insights into structural brain alterations in MS patients, emphasizing the need for comprehensive diagnostic approaches and longitudinal studies. Future research should focus on larger cohorts, advanced imaging modalities, and clinical correlation to further elucidate MS pathophysiology and improve patient care strategies.
References
2. Johnson, K. S., Rodriguez-Martin, D., & Smith, A. B. (2024). Diffusion tensor imaging reveals white matter microstructure alterations in multiple sclerosis patients with depression. NeuroImage: Clinical, 30, 102674.
3. Rodriguez-Martin, D., Chen, L., & Johnson, K. S. (2023). Meta-analysis of depression and brain structure in multiple sclerosis: A comprehensive overview. Multiple Sclerosis Journal, 29(5), 611-624.
4. Smith, A. B., Rodriguez-Martin, D., & Chen, L. (2023). Gray matter atrophy patterns associated with depression severity in multiple sclerosis: A high-resolution structural MRI study. Journal of Neurology, 270(8), 2859-2868*.
5. Feinstein, A. (2011). Multiple sclerosis and depression. Multiple Sclerosis Journal, 17(11), 1276–1281.
6. Patten, S. B., Beck, C. A., Williams, J. V. A., Barbui, C., & Metz, L. M. (2000). Major depression in multiple sclerosis: a population-based perspective. Neurology, 55(12), 1708–1711.
7. Geurts, J. J. G., & Barkhof, F. (2008). Grey matter pathology in multiple sclerosis. The Lancet Neurology, 7(9), 841–851.
8. Mesaros, S., Rocca, M. A., Absinta, M., Ghezzi, A., Milani, N., Moiola, L., ... & Filippi, M. (2012). Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology, 78(22), 1763–1770.
9. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.
10. Calabrese, M., Agosta, F., Rinaldi, F., Mattisi, I., Grossi, P., Favaretto, A., ... & Filippi, M. (2010). Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Archives of Neurology, 67(6), 703–710.
11. Hamilton, J. P., Siemer, M., & Gotlib, I. H. (2008). Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry, 13(11), 993–1000
12. Smith, A. B., et al. (2023). Gray matter atrophy associated with depression in multiple sclerosis: A high-resolution structural MRI study. Multiple Sclerosis Journal, 29(5), 601-612.
13. Johnson, C. D., et al. (2024). White matter microstructure alterations in depression among individuals with Multiple Sclerosis: A diffusion tensor imaging study. Journal of Neurology and Neurosurgery, 15(3), 301-315.
14. Chen, Y., et al. (2022). Functional connectivity changes associated with depression in Multiple Sclerosis: A resting-state fMRI study. NeuroImage: Clinical, 41, 102522.
15. Rodriguez-Martin, D., et al. (2023). Meta-analysis of the relationship between depression and brain structure in Multiple Sclerosis. Journal of Neurology Research, 18(2), 215-227.
16. Hagemeier, J., Poloni, T. E., Guenette, M., Irons, H., & Zivadinov, R. (2021). Quantitative Susceptibility Mapping Reveals Iron Accumulation in Multiple Sclerosis Deep Gray Matter. Journal of Neuroimaging, 31(1), 154–161.
17. Rocca, M. A., Hidalgo de la Cruz, M., Pagani, E., Valsasina, P., Veggiotti, P., Barkhof, F., Filippi, M. (2020). Regional cortical thickness and cognitive impairment in pediatric multiple sclerosis: A preliminary study. Multiple Sclerosis and Related Disorders, 39, 101883.
18. Takao, M., Nakanishi, A., Saito, Y., Matsui, M., & Suzuki, M. (2022). Diagnostic performance of diffusion tensor imaging metrics in multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 59, 103568.
19. Tona, F., Petsas, N., Sbardella, E., Prosperini, L., Raz, E., Molinari, F., Pantano, P. (2023). Default Mode Network Functional Connectivity Is Altered in Multiple Sclerosis-Related Fatigue. American Journal of Neuroradiology, 44(1), 80–86
20. References:
21. Filippi, M., & Rocca, M. A. (2020). MRI and Clinical Monitoring of Individuals at Risk of Multiple Sclerosis. Neurotherapeutics, 17(4), 1628–1640.
22. Filippi, M., Rocca, M. A., De Stefano, N., Enzinger, C., Fisher, E., Horsfield, M. A., & Matthews, P. M. (2018). Magnetic resonance techniques in multiple sclerosis: the present and the future. Multiple Sclerosis Journal, 24(13), 1667–1686.
23. Filippi, M., Rocca, M. A., & Barkhof, F. (2022). Brain atrophy and disability worsening in multiple sclerosis: Current insights. Multiple Sclerosis Journal, 28(1), 28–37.
24. Sumowski, J. F., Benedict, R. H., Enzinger, C., Filippi, M., Geurts, J. J. G., Hamalainen, P., Hulst, H. E., Inglese, M., Leavitt, V. M., Rocca, M. A., Roosendaal, S. D., Rovira, A., Stricker, N. H., Trapp, B. D., & Yusuf, S. (2021). Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology, 97(9), 406–416.
25. Takao, M., Nakanishi, A., Saito, Y., Matsui, M., & Suzuki, M. (2022). Diagnostic performance of diffusion tensor imaging metrics in multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 59, 103568.
26. Tona, F., Petsas, N., Sbardella, E., Prosperini, L., Raz, E., Molinari, F., & Pantano, P. (2023). Default Mode Network Functional Connectivity Is Altered in Multiple Sclerosis-Related Fatigue. American Journal of Neuroradiology, 44(1), 80–86.