STUDIES ON THE SYNTHESIS, CHARACTERIZATION, AND CYTOTOXICITY OF SOME TRANSITION METAL COMPLEXES OF 4-CHLORO-N'-[(E)-(2-HYDROXY-4-METHOXYPHENYL)METHYLIDENE]BENZOHYDRAZIDE

Main Article Content

Kirti P. Mhatre
Dipti D. Gharat
Ramesh S. Yamgar
Shashikant D. Ajagekar

Keywords

Tridentate Schiff base, Metal complexes, Cytotoxic study, XRD, Antimicrobial study

Abstract

The Schiff base 4-chloro-N'-[(E)-(2-hydroxy-4-methoxyphenyl)methylidene]benzohydrazide (HCBHV), was prepared by using 2-Hydroxy-4-methoxybenzaldehyde (vanillin) and 4-chlorobenzohydrazide then the solid complexes of Fe(II), Cu(II), Pd(II), Co(II), Mn(II), Ni(II), Zn(II), Hg(II) and Cd(II) were produced. Molar conductivity, magnetic susceptibility, X-ray diffraction, Fourier transform infrared, nuclear magnetic resonance, ultraviolet-visible, and mass spectrometry were all used to characterize these metal complexes. The metal: ligand ratio in these metal complexes was found to be 1:2 by analysis. The physicochemical investigation provides evidence for the presence of square planar geometry around Cu(II), Pd(II), tetrahedral geometry for Cd(II), Hg(II), Zn(II), and octahedral geometry around Mn(II), Co(II), Fe(II), and Ni(II) ions. The IR spectrum data shows that the ligand acts as a tridentate with an OON-donor atom sequence towards the center metal ion. Metal complexes are likely non-electrolytes because of their low molar conductance values. X-ray diffraction analysis indicates that these compounds likely adopt a monoclinic crystal structure. S. aureus MCC 2408, B. subtilis MCC 2010, P. aeruginosa MCC 2080, and E. coli MCC 2412 were used as test organisms for the HCBHV ligand and their metal complexes' antibacterial and fungicidal activities, respectively

Abstract 34 | pdf Downloads 33

References

1. Singh, V. P., & Singh, P. (2013). Synthesis, spectral characterization, and thermal studies of Co (II), Ni (II), Cu (II), and Zn (II) complexes with 2-amino benzoic acid-and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide. Journal of Molecular Structure, 1035, 363-370.
2. Morgan, S. M., Diab, M. A., & El‐Sonbati, A. Z. (2018). Supramolecular assembly of hydrogen bonding, ESR studies, and theoretical calculations of Cu (II) complexes. Applied Organometallic Chemistry, 32(10), e4504.
3. Chowdhury, D. A., Uddin, M. N., & Hoque, F. (2010). Dioxouranium (vi) complexes of some bivalent tridentate Schiff-base ligands containing ONS donor set. Chiang Mai J. Sci, 37(3), 443-450.
4. Akhter, S., Zaman, H. U., Mir, S., Dar, A. M., & Shrivastava, S. (2017). Synthesis of Schiff base metal complexes: A concise review. European Chemical Bulletin, 6(10), 475-83.
5. Ali, M. A., Mirza, A. H., Ting, W. Y., Hamid, M. H. S., Bernhardt, P. V., & Butcher, R. J. (2012). Mixed-ligand nickel (II) and copper (II) complexes of tridentate ONS and NNS ligands derived from S-alkyldithiocarbazates with the saccharinate ion as a co-ligand. Polyhedron, 48(1), 167-173.
6. Ahmed, A., Chanu, O. B., Koch, A., & Lal, R. A. (2012). Synthesis, spectroscopic, and electrochemical characterization of binuclear dioxomolybdenum complexes derived from disalicylaldehyde succinoyldihydrazone. Journal of Molecular Structure, 1029, 161-168.
7. West, D. X., Padhye, S. B., & Sonawane, P. B. (1991). Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyl dithiocarbamate complexes. In Complex Chemistry (pp. 1-50). Berlin, Heidelberg: Springer Berlin Heidelberg.
8. Farrell, N. (2012). Transition metal complexes as drugs and chemotherapeutic agents (Vol. 11). Springer Science & Business Media.
9. Mali, S. N., Thorat, B. R., Gupta, D. R., & Pandey, A. (2021). Mini-review of the importance of hydrazides and their derivatives-synthesis and biological activity. Engineering proceedings, 11(1), 21.
10. Popiołek, Ł. (2021). Updated information on the antimicrobial activity of hydrazide–hydrazones. International Journal of Molecular Sciences, 22(17), 9389.
11. Abbas, S. E., Awadallah, F. M., Ibrahim, N. A., Said, E. G., & Kamel, G. M. (2012). New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. European journal of medicinal chemistry, 53, 141-149.
12. Sarkar, S., Siddiqui, A. A., Saha, S. J., De, R., Mazumder, S., Banerjee, C., ... & Bandyopadhyay, U. (2016). Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicrobial agents and chemotherapy, 60(7), 4217-4228.
13. Akgul, O., Di Cesare Mannelli, L., Vullo, D., Angeli, A., Ghelardini, C., Bartolucci, G., ... & Carta, F. (2018). Discovery of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the management of rheumatoid arthritis. Journal of Medicinal Chemistry, 61(11), 4961-4977.
14. Alegaon, S. G., Alagawadi, K. R., Garg, M. K., Dushyant, K., & Vinod, D. (2014). 1, 3, 4-Trisubstituted pyrazole analogs as promising anti-inflammatory agents. Bioorganic chemistry, 54, 51-59.
15. Thorat, B. R., Mali, S. N., Rani, D., & Yamgar, R. S. (2021). Synthesis, in silico, and in vitro analysis of hydrazones as potential antituberculosis agents. Current Computer-Aided Drug Design, 17(2), 294-306.
16. Osmaniye, D., Levent, S., Karaduman, A. B., Ilgın, S., Özkay, Y., & Kaplancıklı, Z. A. (2018). Synthesis of new benzothiazole acylhydrazones as anticancer agents. Molecules, 23(5), 1054.
17. Kasimbi, D., Reddy, K. H., & Devanna, N. (2020). Synthesis, spectral studies and antibacterial activity of iron (III) complexes with hydrazone functionalized ligands: X-Ray structure determination of a novel five-coordinate complex containing labile ligands.
18. Meenatchi, V., Siva, S., Meenakshisundaram, S. P., & Cheng, L. (2021). Synthesis, crystal growth, characterization, and DFT investigation of a nonlinear optically active cuminaldehyde derivative hydrazone. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 77(2), 249-259.
19. Abou-Melha, K. S., Al-Hazmi, G. A., Althagafi, I., Alharbi, A., Shaaban, F., El-Metwaly, N. M., ... & El-Bindary, M. A. (2021). Synthesis, characterization, DFT calculation, DNA binding and antimicrobial activities of metal complexes of dimedone arylhydrazone. Journal of Molecular Liquids, 334, 116498.
20. Hashem, H. E., Nath, A., & Kumer, A. (2022). Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. Journal of Molecular Structure, 1250, 131915.
21. Beyene, B. B., Mihirteu, A. M., Ayana, M. T., & Yibeltal, A. W. (2020). Synthesis, characterization and antibacterial activity of metalloporphyrins: Role of central metal ion. Results in Chemistry, 2, 100073.
22. Mahmoud, W. H., Deghadi, R. G., & Mohamed, G. G. (2018). Metal complexes of novel Schiff base derived from iron sandwiched organometallic and 4‐nitro‐1, 2‐phenylenediamine: Synthesis, characterization, DFT studies, antimicrobial activities, and molecular docking. Applied Organometallic Chemistry, 32(4), e4289.
23. Ramesh, G., Daravath, S., Ganji, N., Rambabu, A., & Venkateswarlu, K. (2020). Facile synthesis, structural characterization, DNA binding, incision evaluation, antioxidant and antimicrobial activity studies of Cobalt (II), Nickle (II), and Copper (II) complexes of 3-amino-5-(4-fluorophenyl) isoxazole derivatives. Journal of Molecular Structure, 1202, 127338.
24. Fahmy, H. M., Abdel-Rahman, F. M., El-Sayed, A. A., & El-Sherif, A. A. (2023). Study of novel bidentate heterocyclic amine-based metal complexes and their biological activities: cytotoxicity and antimicrobial activity evaluation. BMC Chemistry, 17(1), 1-28.
25. Kumar, P., Selvi, S. S., Praba, A. L., Selvaraj, M., Rani, L. M., Suganthi, P., ... & Govindaraju, M. (2012). Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest Journal of Nanomaterials and Biostructures, 7(4), 1447-1455.
26. Hasan, M. S., & Das, N. (2017). A detailed in vitro study of naproxen metal complexes in quest of new therapeutic possibilities. Alexandria journal of medicine, 53(2), 157-165.
27. Svehla, G. (2008). Vogel's qualitative inorganic analysis, 7/e. Pearson Education India.
28. Ali, I., Wani, W. A., & Saleem, K. (2013). Empirical formulae to molecular structures of metal complexes by molar conductance. Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry, 43(9), 1162-1170.
29. El-Sherif, A. A., Fetoh, A., Abdulhamed, Y. K., & El-Reash, G. M. A. (2018). Synthesis, structural characterization, DFT studies and biological activity of Cu (II) and Ni (II) complexes of novel hydrazone. Inorganica Chimica Acta, 480, 1-15.
30. Zahirović, A., Osmanković, I., Osmanović, A., Višnjevac, A., Magoda, A., Hadžalić, S., & Kahrović, E. (2023). Interaction of Copper (II) Complexes of Bidentate Benzaldehyde Nicotinic Acid Hydrazones with BSA: Spectrofluorimetric and Molecular Docking Approach. Acta Chimica Slovenica, 70(1),74-85.
31. AbouEl-Enein, S., El-Saied, F. A., Emam, S. M., & Ell-Salamony, M. A. (2008). First raw transition metal complexes of salicylidene and 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2), 421-429.
32. Ahmed, R. M., Abou-Laila, M. T., & Taha, E. O. (2023). Investigating into physical properties of composites of polymer blends and cobalt chloride irradiated by gamma ray for optical devices development. Materials Today Communications, 35, 105752.
33. Rethwisch, D. G., & Dumesic, J. A. (1986). Effect of metal-oxygen bond strength on properties of oxides. 1. Infrared spectroscopy of adsorbed carbon monoxide and carbon dioxide. Langmuir, 2(1), 73-79.
34. Ekennia, A. C., Osowole, A. A., Olasunkanmi, L. O., Onwudiwe, D. C., & Ebenso, E. E. (2017). Coordination behaviours of new (bidentate N, O-chelating) Schiff bases towards copper (II) and nickel (II) metal ions: synthesis, characterization, antimicrobial, antioxidant, and DFT studies. Research on Chemical Intermediates, 43, 3787-3811.
35. Rajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N., & Kalilur Rahiman, A. (2010). Synthesis, characterization, and antimicrobial activities of nickel (II) and copper (II) Schiff-base complexes. Journal of Coordination Chemistry, 63(1), 136-146.
36. Diop, M., Aly‐Gaye, P., Bouyagui‐Tamboura, F., Gaye, M., Pérez‐Lourido, P., Valencia, L., & Castro, G. (2014). Trinuclear Complexes of Zinc (II) and Cobalt (II) with a Tridentate Schiff Base Ligand Containing Phenolate and Pyridine Donor Groups. Zeitschrift für anorganische und allgemeine Chemie, 640(7), 1392-1396.
37. Fey, D., Findeisen, R., & Bullinger, E. (2010). Identification of Biochemical Reaction Networks Using a Parameter-Free Coordinate System. Control Theory and Systems Biology, 297.
38. Badekar R, Lokhande R, Kulkarni S and Patil R (2016); Synthesis and Characterization of (1E, 2E)-1, 2-Diphenylethane-1, 2-Diene Hydrazone Oxime ligand and its Fe(II) and Pd(II) metal complexes; International Journal of Advanced Research; 4, 8.
39. Yadav P, Badekar R, Purnima N and Rama L (2021); Synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes with novel ligand 2-[-(4-bromobenzylidene)hydrazinylidene]-1, 2-diphenylethanime; JASR; 12(1), 231-234.
40. Yadav P, Badekar R, Patankar-Jain K and Lokhande R (2021); Synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes with 2-[4-bromobenzylidene) hydrazinylidene]-1, 2-diphenylethanimine; JASR; 12(1) Suppl-1, 100-102.
41. Chaugule S, Badekar R, Shimpi P and Lokhande R (2018); Synthesis and characterization of novel compound derived from α-benzilmonoximehydrazone with 4, 4- dimethylaminobenzaldehyde and its Fe(II), Ni(II) and Pd(II) complexes; International Journal for Research in Applied Science & Engineering Technology; 6 (VI), 1233-1237.
42. Singh V, Badekar R and Mane R (2019); Synthesis and characterization of Zn(II), Cd(II) and Hg(II) complexes (N''-[(1E)- 2-imino-1, 2- diphenylethylidene]thiocarbonohydrazide; JETIR; 5(3)II, 89-92.
43. Badekar R, Thube A, Kulkarni S and Lokhande R (2018); Antibacterial and antifungal activities of (1E, 2E)-1, 2-diphenylethane-1, 2-diene hydrazone oxime ligand and its Zn(II), Cd(II) and Hg(II) metal complexes; IJRASET; 6(6), 716-719.
44. Drosou, M., Mitsopoulou, C. A., Orio, M., & Pantazis, D. A. (2022). EPR spectroscopy of Cu (II) complexes: Prediction of g-tensors using double-hybrid density functional theory. Magnetochemistry, 8(4), 36.
45. Amonovich, T. M., Nematovna, S. D., Giyasovich, A. K., Bafayevich, U. B., Shukurullayevich, G. B., & Qizi, S. N. Q. (2020). Synthesis and ESR Spectroscopy Complexes of Copper (II) with Acyl-and Aroylhydrazones of Methyl Ester of 5, 5-Dimethyl-2, 4-Dioxohexanoic Acid. American Journal of Heterocyclic Chemistry, 6(2), 24-29.
46. Ozawa, T. (1976). A modified method for kinetic analysis of thermoanalytical data. Journal of thermal analysis, 9, 369-373.
47. Santos, A. F., Brotto, D. F., Favarin, L. R., Cabeza, N. A., Andrade, G. R., Batistote, M., ... & Anjos, A. D. (2014). Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Revista Brasileira de Farmacognosia, 24, 309-315.
48. Muthal, B. N., & Raut, B. N. (2015). Synthesis and Characterization of CoII, NiII, CuII and ZnII. Schiff Base Complexes and Their Microbial Activities. The Pharma Innovation, 4(7, Part A), 1.
49. Sönmez, M., Levent, A., & Şekerci, M. (2003). Synthesis and characterization of Cu (II), Co (II), Ni (II), and Zn (II) complexes of a schiff base derived from 1‐amino‐5‐benzoyl‐4‐phenyl‐1H‐pyrimidine‐2‐one and 3‐hydroxysalicylaldehyde. Synthesis and reactivity in inorganic and metal-organic chemistry, 33(10), 1747-1761.
50. Selwin Joseyphus, R., & Sivasankaran Nair, M. (2009). Synthesis, characterization and antimicrobial activity of transition metal complexes with the Schiff base derived from imidazole-2-carboxaldehyde and glycylglycine. Journal of Coordination Chemistry, 62(2), 319-327