BALANCING INNOVATION AND ETHICS: THE ROLE OF AI IN CANCER RESEARCH AND CLINICAL PRACTICE

Main Article Content

N T Pramathesh Mishra
Shweta Mishra
Parul Mishra
Preeti Singh
Preeti
Alpa Verma
Shristi Mishra
Shalini Singh

Keywords

Oncology, Artificial Intelligence (AI), Ethical Considerations, Innovation, Responsible Deployment

Abstract

Advancements in Artificial Intelligence (AI) have transformed the landscape of oncology, offering unprecedented opportunities for improved cancer research and clinical care. However, this evolution requires a delicate balance between innovation and ethical considerations. This abstract explores the intricate interplay between innovation and responsibility in using AI within oncology.  The integration of AI technologies in oncology presents promising avenues, such as precision medicine, early detection, and personalized treatment strategies. Nevertheless, ethical challenges loom large, including biases in AI algorithms, concerns about transparency and accountability, safeguarding patient privacy, and ensuring informed consent. This underscores the necessity for a proactive approach to reconciling innovation with ethical imperatives. It emphasizes the pivotal role of interdisciplinary collaboration among healthcare professionals, technologists, ethicists, policymakers, and patients. Clear ethical guidelines and continuous assessments are vital to align AI advancements with ethical principles, ensuring that innovation in oncology is ethically grounded. In conclusion, the constructive collaboration between innovation and ethics is fundamental in shaping the future of AI in oncology. A conscientious approach to AI implementation, underpinned by ethical frameworks, is imperative. This abstract advocates for a culture of responsible AI development and deployment in oncology, aiming to maximize the transformative potential of AI while preserving the ethical fabric of healthcare.

Abstract 84 | pdf Downloads 48

References

1. Esteva, A., Robicquet, A., Ramsundar, B., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. DOI: 10.1038/s41591-018-0316-z
2. Haenssle, H. A., Fink, C., Schneiderbauer, R., et al. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), 1836–1842. DOI: 10.1093/annonc/mdy166
3. Luo, G., Sun, G., Wang, K., et al. (2019). Artificial intelligence for the diagnosis of colorectal cancer: A comprehensive review. Expert Review of Gastroenterology & Hepatology, 13(2), 131–139. DOI: 10.1080/17474124.2019.1552393
4. Kourou, K., Exarchos, T. P., Exarchos, K. P., et al. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. DOI: 10.1016/j.csbj.2014.11.005
5. Chartrand, G., Cheng, P. M., Vorontsov, E., et al. (2017). Deep learning: a primer for radiologists. Radiographics, 37(7), 2113–2131. DOI: 10.1148/rg.2017170077 Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: 10.1038/nature21056
6. Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. DOI: 10.1038/s41591-018-0300-7
7. Gao, J., Aksoy, B. A., Dogrusoz, U., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. DOI: 10.1126/scisignal.2004088
8. Lundberg, S. M., Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. PDF
9. Huang, C., Mezencev, R., McDonald, J. F., et al. (2011). Identification of mRNA biomarkers associated with PTSD in military veterans. BMC Medical Genomics, 4(1), 1–9. DOI: 10.1186/1755-8794-4-1
10. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105. PDF
11. Zou, J., Huss, M., Abid, A., et al. (2019). A primer on deep learning in genomics. Nature Genetics, 51(1), 12–18. DOI: 10.1038/s41588-018-0295-5
12. Shen, D., Wu, G., Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. DOI: 10.1146/annurev-bioeng-071516-044442
13. Doshi-Velez, F., Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. PDF
14. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., et al. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141), 20170387. DOI: 10.1098/rsif.2017.0387 Rajkomar, A., Dean, J., Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347–1358. DOI: 10.1056/NEJMra1814259
15. Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. DOI: 10.1016/j.media.2017.07.005
16. Chen, J. H., Asch, S. M. (2017). Machine learning and prediction in medicine: beyond the peak of inflated expectations. JAMA Internal Medicine, 177(1), 108–109. DOI: 10.1001/jamainternmed.2016.8297
17. Wang, S., Summers, R. M. (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933–951. DOI: 10.1016/j.media.2012.02.005
18. Rumsfeld, J. S., Joynt, K. E., Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: promise and challenges. Nature Reviews Cardiology, 13(6), 350–359. DOI: 10.1038/nrcardio.2016.42
19. Weng, S. F., Reps, J., Kai, J., et al. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. DOI: 10.1371/journal.pone.0174944
20. Char, D. S., Shah, N. H., Magnus, D. (2018). Implementing machine learning in health care—addressing ethical challenges. New England Journal of Medicine, 378(11), 981–983. DOI: 10.1056/NEJMp1714229
21. Beam, A. L., Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391 Oh, S., Kim, J. H., Choi, S. W., et al. (2021). Ethical considerations in the era of artificial intelligence in oncology. Cancer Medicine, 10(17), 5807–5821. DOI: 10.1002/cam4.4126
22. Ghassemi, M., Naumann, T., Schulam, P., et al. (2018). A review of challenges and opportunities in machine learning for health. AMIA Joint Summits on Translational Science Proceedings, 2018, 191–200. PubMed
23. Char, D. S., Shah, N. H. (2017). A practical guide to building ethical AI in healthcare. Harvard Data Science Review, 1(1). DOI: 10.1162/99608f92.f1ad3c64
24. Cohen, I. G., Amarasingham, R., Shah, A., et al. (2019). The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Affairs, 38(3), 493–497. DOI: 10.1377/hlthaff.2018.05147
25. Vayena, E., Blasimme, A. (2017). Health research with big data: time for systemic oversight. The Journal of Law, Medicine & Ethics, 45(3), 395–403. DOI: 10.1177/1073110517734932
26. Price, W. N., Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37–43. DOI: 10.1038/s41591-018-0272-7
27. Char, D. S., Shah, N. H. (2018). An evidence-based approach to interactive machine learning for clinical decision support systems. AMIA Annual Symposium Proceedings, 2018, 320–329. PubMed
28. Sarwal, A., Sarwal, T., Fenech, M. (2019). Artificial intelligence and big data in cancer management: Challenges and opportunities. Advances in Experimental Medicine and Biology, 1168, 145–156. DOI: 10.1007/978-3-030-24115-4_10
29. Cabitza, F., Rasoini, R., Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. JAMA, 318(6), 517–518. DOI: 10.1001/jama.2017.7797
30. Kumar, A., Choudhary, P., Kumari, R., et al. (2020). Ethical challenges of artificial intelligence in healthcare. Annals of Phytomedicine, 9(1), 84–88. ResearchGate
31. Obermeyer, Z., Emanuel, E. J. (2016). Predicting the future — big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216–1219. DOI: 10.1056/NEJMp1606181
32. Rajkomar, A., Dean, J., Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347–1358. DOI: 10.1056/NEJMra1814259
33. Beam, A. L., Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391
34. Char, D. S., Shah, N. H. (2017). A practical guide to building ethical AI in healthcare. Harvard Data Science Review, 1(1). DOI: 10.1162/99608f92.f1ad3c64
35. Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. DOI: 10.1038/s41591-018-0300-7
36. Char, D. S., Shah, N. H. (2017). A practical guide to building ethical AI in healthcare. Harvard Data Science Review, 1(1). DOI: 10.1162/99608f92.f1ad3c64
37. Bates, D. W., Landman, A., Levine, D. M. (2019). Health apps and health policy: what is needed? JAMA, 320(19), 1975–1976. DOI: 10.1001/jama.2019.15066
38. Vayena, E., Blasimme, A. (2017). Health research with big data: time for systemic oversight. The Journal of Law, Medicine & Ethics, 45(3), 395–403. DOI: 10.1177/1073110517734932
39. Beam, A. L., Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391
40. Rajkomar, A., Dean, J., Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347–1358. DOI: 10.1056/NEJMra1814259
41. Hawkins, J. B., Clement, M. E., Evans, D. P. (2020). Understanding and improving computational study design and analysis in oncology. JCO Clinical Cancer Informatics, 4, 289–297. DOI: 10.1200/CCI.19.00163
42. Zhang, X., Zhao, J., LeCun, Y. (2018). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530. PDF
43. Miotto, R., Wang, F., Wang, S., et al. (2018). Deep learning for healthcare: review, opportunities, and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. DOI: 10.1093/bib/bbx044
44. Obermeyer, Z., Emanuel, E. J. (2016). Predicting the future — big data, machine learning, and clinical medicine. The New England Journal of Medicine, 375(13), 1216–1219. DOI: 10.1056/NEJMp1606181
45. Shah, N. H., Milstein, A., Bagley, T. P. (2019). Making machine learning models clinically useful. JAMA, 322(14), 1351–1352. DOI: 10.1001/jama.2019.11186
46. Beam, A. L., Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391