Decontamination of Dental Implants Using Two Different Solutions and Different Contact Times: An Experimental Study

Main Article Content

Adeeb Ali Mohamed; Tamer Abd Elbari Hamed; Ibrahim Hussein Ahmed; Mohamed Hassan Eid

Keywords

Dental Implants; Decontamination ; Ozone ; Chlorhexidine

Abstract

Osseointegration used in relation to titanium metallic implants, the idea now applies to all biomaterials that can osseointegrate in facial bone, such as ceramics which used as bone substitutes. Objective: to compare the decontamination of dental implants using chlorhexidin and ozonated water contact time (1 & 3 min.) each prior to implantation in rabbits' tibial bone. Patients and methods: Twenty eight healthy New Zealand white rabbits weighing 2.5-3 kg were used for this study and divided equally into two groups, then each group subdivided into two subgroup each of seven. Dental implants decontaminated by chlorhexidine 2% and ozonated water. All animals have been sacrificed 8 weeks post implantation. The operated tibia have been harvested and preserved in formalin 10%.  New bone and the osteoid matrix content around the dental implants have been evaluated histologically. Results: All animals of the experiment stayed a life till the end of the experiment with no complications what so ever except some members in groups A1, B1 and B2 shows sinus tracts oozing pus at the surgical site. The acute abcess (A.A) in rabbit tibial bone showed a significant decrease in groups A2, B1 and B2 in comparison with group A1. The lowest decrease was observed in groups A2 and B1.The subacute abcess (SA.A) showed a significant increase in rabbit bone of group B1 when compared with group A1. The non-abcess (N.A) revealed a significant increase in rabbit bones of groups A2 and B2 comparatively with those of group A1, however N.O.M in rabbit bone of  group B1 showed insignificant statistical change when matched with group A1. Conclusion: Decontamination of already contaminated dental implant with human saliva prior to implantation using chlorohxidine 2% for three minutes give decent and proper result on the surrounding bony tissues than using ozonated water from ozone generator device (output 400 mg/hour ) when used for the same exact  time.

Abstract 53 | PDF Downloads 44

References

1- Albrektsson, T., & Wennerberg, A. (2019). On osseointegration in relation to implant surfaces. Clinical implant dentistry and related research, 21, 4-7.‏
2- Guglielmotti, M. B., Olmedo, D. G., & Cabrini, R. L. (2019). Research on implants and osseointegration. Periodontology 2000, 79(1), 178-189.‏
3- Hotchkiss, K. M., Sowers, K. T., & Olivares-Navarrete, R. (2019). Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dental Materials, 35(1), 176-184.‏
4- Mundt, T., Kobrow, J., & Schwahn, C. (2020). Follow-up examination of patients with mini-implants for the stabilization of existing removable partial dentures. Dtsch Zahnärztl Z Int, 2, 38-49.‏
5- Choi, R. (2019). A Rationale for Fixed Restorations Supported by Mini Dental Implants: Case Reports and Practical Case Selection Guidelines. Compendium.‏
6- Aboelnagga, M. M., & El Homossany, M. E. M. B. (2018). Comparative Assessment of different degree of retention of ERA attachment on the supporting structures of implant supported mandibular overdenture. Egyptian Dental Journal, 64(1-January (Fixed Prosthodontics, Dental Materials, Conservative Dentistry & Endodontics)), 397-407.‏
7- Tretto, P. H. W., Fabris, V., Cericato, G. O., Sarkis-Onofre, R., & Bacchi, A. (2019). Does the instrument used for the implant site preparation influence the bone–implant interface? A systematic review of clinical and animal studies. International Journal of oral and maxillofacial surgery, 48(1), 97-107.‏
8- Keklikoglu, N., & Akinci, S. (2013). Comparison of three different techniques for histological tooth preparation. Folia histochemica et cytobiologica, 51(4), 286-291.‏
9- Cirera, A., Sevilla, P., Manzanares, M. C., Franch, J., Galindo-Moreno, P., & Gil, J. (2020). Osseointegration around dental implants biofunctionalized with TGFβ-1 inhibitor peptides: an in vivo study in beagle dogs. Journal of Materials Science: Materials in Medicine, 31(8), 1-15.‏
10- Gerrity, D., Rosario-Ortiz, F. L. & Wert, E. C. (2017). Application of ozone in water and wastewater treatment. In Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications. IWA Publishing (pp. 123-162)..‏
11- Manju, V., Iyer, S., Menon, D., Nair, S. V., & Nair, M. B. (2019). Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. Materials Science and Engineering: C, 104, 109864.‏
12- Yazan, M., Kocyigit, I. D., Atil, F. E. T. H., Tekin, U., Gonen, Z. B., & Onder, M. E. (2019). Effect of hyaluronic acid on the osseointegration of dental implants. British Journal of Oral and Maxillofacial Surgery, 57(1), 53-57.‏
13- Steigenga, J., Al‐Shammari, K., Misch, C., Nociti Jr, F. H., & Wang, H. L. (2004). Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. Journal of periodontology, 75(9), 1233-1241.‏
14- Zamborsky, R., Svec, A., Bohac, M., Kilian, M., & Kokavec, M. (2016). Infection in bone allograft transplants. Exp Clin Transplant, 14(5), 484-490.‏
15- Brand, H. S., & Veerman, E. C. (2013). Saliva and wound healing. Chin J Dent Res, 16(1), 7-12.‏
16- Rokadiya, S., & Malden, N. J. (2008). An implant periapical lesion leading to acute osteomyelitis with isolation of Staphylococcus aureus. British dental journal, 205(9), 489-491.‏
17- Jinno, Y., Jimbo, R., Hjalmarsson, J., Johansson, K., Stavropoulos, A., & Becktor, J. P. (2019). Impact of surface contamination of implants with saliva during placement in augmented bone defects in sheep calvaria. British Journal of Oral and Maxillofacial Surgery, 57(1), 41-46.‏
18- Tezulas, E., & Dilek, O. C. (2008). Decontamination of autogenous bone grafts collected from dental implant sites via osteotomy: a review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 106(5), 679-684.‏
19- Kellesarian, S. V., Javed, F., & Romanos, G. E. (2018). Osteomyelitis arising around osseointegrated dental implants: A systematic review. Implant Dentistry, 27(2), 226-235.‏
20- Mandell, J. C., Khurana, B., Smith, J. T., Czuczman, G. J., Ghazikhanian, V., & Smith, S. E. (2018). Osteomyelitis of the lower extremity: pathophysiology, imaging, and classification, with an emphasis on diabetic foot infection. Emergency radiology, 25(2), 175-188.
21- Scarano, A., Crocetta, E., Quaranta, A., & Lorusso, F. (2018). Influence of the thermal treatment to address a better osseointegration of Ti6Al4V dental implants: Histological and histomorphometrical study in a rabbit model. BioMed research international, 2018.‏
22- Rajendiran, R., Marimuthu, M., Wahab, A., & Sridharan, G. (2021). A Rare Case of Osteomyelitis Presenting as Cyst-Like Lesion in the Coronoid Process: A Diagnostic Challenge. Cureus, 13(10).‏
23- Abraham, H. M., Philip, J. M., Kruppa, J., Jain, A. R., & Krishnan, C. V. (2015). Use of chlorhexidine in implant dentistry. Biomedical and Pharmacology Journal, 8(October Spl Edition), 341-345.‏
24- Fiorillo, L. (2019). Chlorhexidine gel use in the oral district: A systematic review. Gels, 5(2), 31.
25- Sajjan, P., Laxminarayan, N., Kar, P. P., & Sajjanar, M. 2016,' Chlorhexidine as an antimicrobial agent in dentistry–a review', Oral Health Dental Managment, vol.15, no.2, pp. 93-100.‏
26- Azarpazhooh, A., & Limeback, H. (2008). The application of ozone in dentistry: a systematic review of literature. Journal of dentistry, 36(2), 104-116.‏
27- Mirmortazavi, A., Haghi, H. R., Fata, A., Zarrinfar, H., Bagheri, H., & Mehranfard, A. (2018). Kinetics of antifungal activity of home-generated ozonated water on Candida albicans. Current Medical Mycology, 4(2), 27.‏