BIOGENIC SYNTHESIS OF SILVER NANOPARTICLES USING HAPLOPHYLLUM GILESII LEAF EXTRACT AND EVALUATION OF ITS BIOLOGICAL ACTIVITIES

Main Article Content

Saleha Ashfaq
Manzoor Hussain
Muhammad Azhar Khan
Muhammad Niaz
Tahira Bibi
Shahana Aziz
Saima Safdar
Fizza Rehman
Asma Ul Husna

Keywords

Silver Nanoparticles, Antibacterial, Antioxidant, Haplophyllum gilesii

Abstract

Nanotechnology has got significant importance in biomedical era in the last two decades. Nanoparticles( NP) being smaller in size are acquiring worldwide attention in the field of science and technology. Moreover, the biosynthesis of nanoparticles from various plant extracts is is profitable and eco-friendly. In the present study Haplophyllum gilesii (Hemsl.) C.C. townsend a narrow endemic plant species reported from Northern Pakistan (1500-4000 meters) was screened first time for synthesis of silver nano-particles(AgNPs) from the leaf extract. The prepared metal nanoparticles (MNPs) were further characterized by using X-ray diffraction (XRD) analysis, UV–visible spectroscopy and Scanning Electron Microscopy (SEM). A comparative antibacterial potential of raw methanolic extract and prepared silver nanoparticles(AgNPs) was evaluated which revealed that Nps exhibited the most pronounced antibacterial potential against Gram- negative and Gram- bacteria positive i-e AgNPs of H. gilesii exhibited significant zone of Inhibition against S. aureus, B. subtiis, E. coli, S. typhi, P. aeruginosa and than the crude extract alone. Similarly, the results of the antioxidant activity of AgNPs of H. gilesii were more significant than crude extract. Hence, the present study proved that H. gilesii might be a good source of potential antibiotics and valuable antioxidants. Moreover, further research is needed to isolate essential bioactive compounds to devise anti-cancerous drugs.

Abstract 150 | pdf Downloads 81

References

1. Abbasifar, A., Ghani, S., Ahsani, I. M., Rafiee, B., Kaji, B.V., & Akbari, A. (2017). Antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix, Zahedan J. Res Med Sci, 19(1) e5920. Doi: 10.17759/zjrms-5920.
2. Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18(4), 356-363.
3. Alam, J. (2009). Endemic flora of Gilgit and Baltistan and conservation strategies for threatened endemic taxa. PhD Dissertation University of Karachi.
4. Alam, J. & S. I. Ali. (2010). "Contribution to the red list of the plants of Pakistan." Pakistan Journal of Botany 42(5): 2967-2971.
5. Al-Yahya, M. A.; Al-Rehaily, A. J.; Ahmad, M. S.; Al-Said, M. S.; El-Feraly, F. S.; Hufford, C. D., New alkaloids from Haplophyllum tuberculatum. J. Nat. Prod. 1992, 55, (7), 899-903.

6. Arokiyaraj, S., Arasu, M.V., Vincent, S., Prakash, N.U., Choi, S.H., Oh, Y.K., Choi,K.C., Kim, K.H., 2014. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. Int. J. Nanomed. 9, 379–388.
7. Ashfaq, S., Hussain, M., Bibi, N., Alam, J., & Junaid, M. (2020). Antimicrobial and Cytotoxic Potential of Haplophyllum gilesii (Hemsl.) CC from Northern Pakistan. Pakistan Journal of Agricultural Research, 33(1).
8. Ashwani, K., Sunity, S., Dinesh, K., 2014. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. Int. J. Pharm. Sci. Rev. Res. 24 (2), 202–207
9. Borchert, H., Shevchenko, E. V., Robert, A., Mekis, I., Kornowski, A., Grübel, G., & Weller, H. (2005). Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir, 21(5), 1931-1936.
10. Caroling, G., Tiwari, S. K., Ranjitham, A. M., & Suja, R. (2013).Biosynthesis of silver nanoparticles using aqueous broccoli extract-characterization and study of antimicrobial, cytotoxic effects. Asian J Pharm Clin Res, 6(4), 165-172.
11. Chang, W., Choi, S. C. K., Soon, S. H., Bong, K. C., Hye, J. A., Min, Y. L., Sang, H. P. &. Soo, K. K (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavanoids by assay guided comparison. Plant sciences, 163: 1161– 1168.
12. Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956-960.
13. Erjaee, H., Rajaian, H., & Nazifi, S. (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(2), 025004.
14. Elumalai, E. K., Prasad, T. N.V. K.V., Hemachandran, J., Therasa, S.V., Thirumalai, T., and David, E. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. Journal of Pharmaceutical Sciences & Research,2 (9): 549- 554.
15. Ghorbani, A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran:(Part 1): General results. J. Ethnopharmacol. 2005, 102, 58–68.
16. Jaina, D., Daimab, H. K., Kachhwaha, S., & Kotharia, S. L. (2009). Synthesis of plant mediated silver nanoparticles using Papaya fruit extract and evaluation of their anti-microbial activities. Digest Journal of Nanomaterials and Biostructures, 4(4): 723 – 727.
17. Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and surfaces B: Biointerfaces, 77(2), 257-262.
18. Kharat, S. N., & Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Materials Science and Engineering: C, 62, 719-724.
19. Kim, J.S., Eunye, K., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim,S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H., 2007. Antimicrobial effects of silver nanoparticles nanomedicine: nanotechnology. Biol. Med. 3, 95– 101.
20. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., Lee, D.S., 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39 (1), 77–85.
21. Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar,P.,Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surface. B.Biointerfaces, 76(1): 50–56.
22. Mittal, A. K., Kaler, A., & Banerjee, U. C. (2012). Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomedicine & Engineering, 4(3).
23. Mulvaney, P., (1996). Surface Plasmon spectroscopy of nanosized metal particles.Langmuir 12, 788–800.
24. Nagati, V., Rama, K., Jahnavi, A., Manisha, R.D., Karunakar, R.K., Rudra, P.M.P., 2012. Green synthesis and characterization of SILVER nanoparticles from Cajanus cajan leaf extract and its antibacterial activity. Int. J. Nanomater. Biostructures 2 (3), 39–43.
25. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the Antibacterial Activity of Silver Nanoparticles depend on the shape of the Nanoparticle? A study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6): 1712–1720.
26. Palanisamy, N.K., Nas, F., Amirulhusni, A.N., Zaini, M.Z., Hussaini, J., Liew Jian Ping, L.J., Durairaj, R., 2014. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseu- domonas Aeruginosa. J. Nanobiotechnol. 12, 2. http://dx.doi.org/ 10.1186/1477-3155-12-2.
27. Pavani, K. V., Gayathramma, K., Banerjee, A., & Suresh, S. (2013). Phyto-synthesis of Silver Nanoparticles Using Extracts of Ipomoea indicaFlowers. American Journal ofNanomaterials, 1(1):5-8.
28. Ramamurthy, C. H., Padma, M., Samadanam, D. M. I., Mareeswaran, R., Suyavaran, A., & Kumar, S. M. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf BBiointerfaces, 102: 808–15.
29. Safaepour, M., Shahverdi, A. R., Shahverdi, H. R., Khorramizadeh, M. R., & Gohari, A. R. (2009). Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna journal of medical biotechnology, 1(2), 111.
30. Shankar, S. S., Ahmad, A., Parsricha, R., & Sastry, M.J. (2003). Bioreduction of chloroaurate ions by Geraniumleaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Material Chemistry, 13: 1822–1826.
31. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2005). Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 17(3), 566-572.
32. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981-2988.
33. Smitha, S.L., Philip, D., & Gopchandran, K. G. (2009.) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth (Article).74(3):15735-739.
34. Solgi, M., & Taghizadeh, M. (2012). Silver Nanoparticles Ecofriendly Synthesis by Two Medicinal Plants. International Journal of Nanomaterials and Biostructures, 2(4): 60-64.
35. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
36. Sotiriou, G. A., & Pratsinis, S. E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental science & technology, 44(14), 5649-5654.
37. Townsend, C.C. 1986. Taxonomic revision of the genus Haplophyllum (Rutaceae). In: Hooker’s icones plantarum, vol. 40, parts 1-3. Kent, U.K.: Bentham-Moxon Trust.
38. Varamini, P.; Doroudchi, M.; Mohagheghzadeh, A.; Soltani, M.; Ghaderi, A. Cytotoxic evaluation of four Haplophyllum species with various tumor cell lines. Pharm. Biol. 2007, 45, 299–302.

Most read articles by the same author(s)