ANTAGONISTIC ACTION OF MUTANT BACILLUS SUBTILIS AGAINST PLANT PATHOGANDENIC FUNGI ASPERGILLUS NIGER AND MICROSPORUM BULLARDI

Main Article Content

Pragati Singh
Adam Arasada
Sangeeta Choudhary
Shrilekha Misra

Keywords

Bacillus subtilis, Induction of mutation, NaN3 Antagonistic activity of mutant strain, GCMS analyses, Lowry Assay.

Abstract

Our research focused on a mutant strain of Bacillus subtilis and its potential to combat plant-pathogenic fungus like Aspergillus niger and Microsporum bullardi. Bacillus subtilis is widely recognized as a biocontrol agent that can inhibit the development of numerous plant diseases. In this study, mutagenesis was used to create a strain of B. subtilis with improved antifungal properties. Several in vitro tests were performed to measure the mutant strain's inhibitory potential. To investigate the mutant strain's inhibitory effects on fungal growth, the dual culture technique was used. Inhibition zones around mutant colonies were significantly larger than those around control colonies, demonstrating that the mutant might hinder the spread of both A. niger and M. bullardi. Radial growth of the fungi was measured with and without the mutant strain to demonstrate its antifungal action. Extracellular antifungal metabolites produced by the mutant strain were evaluated through GCMS to better understand the mechanisms driving the antagonistic effect. Significant antifungal activity against both infections was seen in the culture supernatant of the mutant strain, demonstrating the release of strong antifungal chemicals. The mutant strain significantly reduced the incidence of fungal infections, resulting in plants that were both healthier and more robust than their control counterparts.


Overall, the Bacillus subtilis mutant strain was highly hostile to the plant-pathogenic fungus Aspergillus niger and Microsporum bullardi. The increased generation of antifungal metabolites was found to be responsible for the mutant strain's improved antifungal capabilities. These results suggest that the mutant B. subtilis strain has great promise as a biocontrol agent for the management of plant fungal infections, representing a greener alternative to chemical fungicides.

Abstract 54 | PDF Downloads 41

References

1. Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K. H., Ehrenreich, P., ... & Gottschalk, G. (2004). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Microbial Physiology, 7(4), 204-211.
2. Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., ... & Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillusspecies. Genome biology, 5(10), 1-12.
3. Jiménez-Delgadillo, R., Valdés-Rodríguez, S. E., Olalde-Portugal, V., Abraham-Juárez, R., & García-Hernández, J. L. (2018). Effect of pH and temperature on the growth and antagonistic activity of Bacillus subtilis on Rhizoctonia solani. Revista mexicana de fitopatología, 36(2), 256-275.
4. Earl, A. M., Losick, R., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in microbiology, 16(6), 269-275.
5. John, U. S., & John, M. C. (2015). Production and application of microbial surfactant from cassava wastewater. Am J Eng Technology Soc, 2(4), 85-89.
6. Matarante, A., Baruzzi, F., Cocconcelli, P. S., & Morea, M. (2004). Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Applied and Environmental Microbiology, 70(9), 5168-5176.
7. Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., & Lantz, M. S. (2007). The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy, 59(2), 297-300.
8. Stein, T., & Mikrobiologie, I. Goethe-, JW (2005). Bacillus subtilis, 845-857.
9. Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., & Ochi, K. (2002). Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial Agents and Chemotherapy, 46(2), 315-320.
10. Feio, S. S., Barbosa, A., Cabrita, M., Nunes, L., Esteves, A., Roseiro, J. C., & Curto, M. J. M. (2004). Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi. Journal of Industrial Microbiology and Biotechnology, 31(5), 199-203.
11. Wandrey, M., Trevaskis, B., Brewin, N., & Udvardi, M. K. (2004). Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiology, 134(1), 182-193.
12. Gong, M., WANG, J. D., Zhang, J., Yang, H., LU, X. F., Pei, Y., & CHENG, J. Q. (2006). Study of the antifungal ability of Bacillus subtilis strain PY‐1 in vitro and identification of its antifungal substance (iturin A). Acta Biochimica et Biophysica Sinica, 38(4), 233-240.
13. Bapat, S., & Shah, A. K. (2000). Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Canadian Journal of Microbiology, 46(2), 125-132.
14. Bernal, G., Illanes, A., & Ciampi, L. (2002). Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic Journal of Biotechnology, 5(1), 7-8.
15. Kim, P. I., Ryu, J. W., Kim, Y. H., & Chi, Y. T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of microbiology and biotechnology, 20(1), 138-145.
16. Heslot, H., Ferrary, R., Levy, R., & Monard, C. (1959). Recherches sur les substances mutagènes (halogéno-2 éthyl) amines, dérivés oxygénés du sulfure de bis-(chloro-2 éthyle), esters sulfoniques et sulfuriques. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 248(5), 729-732.
17. Santoyo, G., Orozco-Mosqueda, M. D. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology, 22(8), 855-872.
18. Pinchuk, I. V., Bressollier, P., Sorokulova, I. B., Verneuil, B., & Urdaci, M. C. (2002). Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Research in Microbiology, 153(5), 269-276.
19. Wang, S., Wu, H., Qiao, J., Ma, L., Liu, J., Xia, Y., & Gao, X. (2009). Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. Journal of microbiology and biotechnology, 19(10), 1250-1258.
20. Kim, P. I., Ryu, J. W., Kim, Y. H., & Chi, Y. T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of microbiology and biotechnology, 20(1), 138-145.
21. Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of chemical ecology, 39(7), 869-878.
22. Baysal, Ö., Lai, D., Xu, H. H., Siragusa, M., Çalışkan, M., Carimi, F., ... & Tör, M. (2013). A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One, 8(1), e53182.
23. Tan, Z., Lin, B., & Zhang, R. (2013). A novel antifungal protein of Bacillus subtilis B25. SpringerPlus, 2(1), 1-6.
24. Li, X. Y., Yang, J. J., Mao, Z. C., Ho, H. H., Wu, Y. X., & He, Y. Q. (2014). Enhancement of biocontrol activities and cyclic lipopeptides production by chemical mutagenesis of Bacillus subtilis XF-1, a biocontrol agent of Plasmodiophora brassicae and Fusarium solani. Indian journal of microbiology, 54(4), 476-479.
25. Baffoni, L., Gaggia, F., Dalanaj, N., Prodi, A., Nipoti, P., Pisi, A., ... & Di Gioia, D. (2015). Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC microbiology, 15(1), 1-10.
26. Shternshis, M. V., Belyaev, A. A., Matchenko, N. S., Shpatova, T. V., & Lelyak, A. A. (2015). Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum. Environmental Science and Pollution Research, 22(20), 15656-15662.
27. Zhang, C. X., Zhao, X., Han, F., Yang, M. F., Chen, H., Chida, T., & Shen, S. H. (2009). Comparative proteome analysis of two antagonist Bacillus subtilis strains. Journal of microbiology and biotechnology, 19(4), 351-357.
28. Brown, M., Dunn, W. B., Ellis, D. I., Goodacre, R., Handl, J., Knowles, J. D., ... & Kell, D. B. (2005). A metabolome pipeline: from concept to data to knowledge. Metabolomics, 1(1), 39-51.
29. Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., & Fukusaki, E. (2011). GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC bioinformatics, 12(1), 1-13.
30. Villas‐Bôas, S. G., Højer‐Pedersen, J., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast, 22(14), 1155-1169.
31. Poojary, M. M., & Passamonti, P. (2016). Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization. Journal of Chromatography A, 1476, 88-104.
32. Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.
33. Hayashida‐Soiza, G., Uchida, A., Mori, N., Kuwahara, Y., & Ishida, Y. (2008). Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. Journal of applied microbiology, 105(5), 1672-1677.
34. Osuntokun, O. T., & Cristina, G. M. (2019). Bio-guided isolation, chemical purification, identification, antimicrobial and synergistic efficacy of extracted essential oils from stem bark extract of Spondias mombin (Linn). Int J Mol Biol Open Access, 4(4), 135-143.
35. Ahsan, T., Chen, J., Zhao, X., Irfan, M., & Wu, Y. (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7(1), 1-9.
36. Parekh, S., Vinci, V.A., and Strobel, R.J. (2000). Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol. 54(3):28701.
37. Spadaro, D., and Gullino, M.L. (2005). Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 24:601–13.
38. Adrio, J.L., and Arnold, L.D. (2006). Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev. 30(2):187–214.
39. Latif, A., Iqbal, M., and Asgher, M. (2018). Ethyl Methane Sulfonate Chemical Mutagenesis of Bacillus subtilis for Enhanced Production of Protease. Organic & Medicinal Chem IJ 5(3): OMCIJ.MS.ID.555664.
40. Mukherjee, P.K., Mehetre, S.T., Sherkhane, P.D., Muthukathan, G., Ghosh, A., Kotasthane, A.S., et al. (2019). A novel seed-dressing formulation based on an improved mutant strain of Trichoderma virens, and its field evaluation. Front Microbiol. 10:1910.
41. Gong, G., Zheng, Z., Chen, H., Yuan, C., Wang, P., Yao, L., et al. (2009). Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol Biotechnol. 47:27–31.
42. Hajduch, M., Debre, F., Bohmova, B., Dolesova, P. & Pretova, A. (2000). Two soybean mutants with increased total and sulphur amino acid content induced by sodium azide. J Gent Breed 54: 83-87.
43. Hussain, S., Khan, W.M., Khan, M.S., Akhtar, N., Umar, N., Ali, S., Ahmed, S., and Shah, S.S. (2017). Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled). Pure Appl. Biol., 6(1): 226-236, http://dx.doi.org/10.19045/bspab.2017.60018.
44. Bharose A, Gajera H. (2018). Antifungal activity and metabolites study of bacillus strain against aflatoxin producing Aspergillus. Journal of Applied Microbiology and Biochemistry. 2(2):8
45. Ramyabharathi S, Raguchander T. (2014). Efficacy of secondary metabolites produced by EPCO16 against tomato wilt pathogen. Journal of Mycology and Plant Pathology. 44(2):148.
46. Jiang Y, Han Q, Shen R, Zang X, Wang B. (2014). Synthesis and antimicrobial activity of some new 4H-pyrrolo [1-2a] benzimidazoles. Chemical Research in Chinese Universities. 30(5):755-758