A REVIEW ON THE IMPACT OF HUMAN GENETICS ON CARDIOVASCULAR DISEASE

Main Article Content

Noor Subhani
Fatima Hussain
Talha Ghafoor Sial

Keywords

Abstract

Globally, cardiovascular disease (CVD) is the leading cause of death. It is a highly heritable condition therefor for a long time; researchers have been attempting to explore the genetic fundamentals of it. Numerous risk factors that have been found to be closely linked to the onset of CVD have been identified. These, however, only account for a small portion of instances; hence, study into the underlying reasons of the unexplainable risk has moved to genomes and then genetics. According to many studies, there is a genetic component to CVD; nevertheless, identifying the specific genomic elements that contribute to the development of CVD has been more difficult than expected, with just a handful of those cases exhibiting Mendelian inheritance. While particular genetic variants linked to illness have been identified by genome-wide association studies (GWAS), the underlying biochemical pathways are just now starting to become clear. We must connect these relationships to the complex, multifaceted regulation of gene expression in order to completely comprehend the biological consequences of these interactions. Comprehending the relationship between the information encoded in DNA and the functioning of these regulating layers would facilitate the creation of more efficacious medicines, as well as improved prognoses for the onset of cardiovascular disease. The human body is made up of 3,100 million haploid base pairs and 6,200 million diploid base pairs. Yet, due to natural selection, typical genetic variations have little impact on diseases, but rare genetic variations likely to display significant effect size. Thus, it makes logical to split genetic differences to two categories according to rate of allele and scopes on diseases. We are aware that uncommon genetic variations in many important genes, particularly those related to fat, are clearly linked to an elevated likelihood of CVD, although an a polygenic menace score made up of public chromosomal distinctions seems to function very good  in over-all people. This data can be utilized to identify new pharmaceutical targets in addition to risk categorization. We present the crucial and straightforward theory that human genetics is significant for cardiovascular illness as, it is a greatly transmissible feature in this article of review, and we think it will pave the way for precision therapy in this field.

Abstract 167 | PDF Downloads 72

References

1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW,etal.Heart disease and stroke statistics- :are port from the American heart association. Circulation 2021;143:e254–743.
2. Mahmood, Levy, VasanT, WangTJ. The framingham heart study and the epidemiology of cardiovascular disease:a historical perspective. Lancet 2014; 383:999–1008
3. AnderssonC, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 2019; 16:687–98
4. Ninomiya. Japanese legacy cohort studies: the Hisayama Study. J Epidemiol 2018;28:444–51
5. HondaT, Chen S, HataJ, Yoshida D,Hirakawa Y,Furuta Y,etal. Development and validation ofa risk prediction model for atherosclerotic cardiovascular Disease in Japanese adults :the Hisayama study. J AtherosclerThromb2021. doi:10.5551/jat.61960.
6. TadaH, UsuiS, SakataK, TakamuraM, Kawashiri MA. Challenges of precision Medicine for atherosclerotic cardiovascular disease based on human genome Information. J Atheroscler Thromb2021; 28:59.
7. TadaH, UsuiS, Sakata K, TakamuraM, KawashiriMA. Low-density lipoprotein Cholesterol level cannot be too low: considerations from clinical trials, human genetics, and biology AtherosclerThromb2020; 27:489–98.
8. TadaH, FujinoN, NomuraA, NakanishiC, HayashiK, TakamuraM, etal.Personalized medicine for cardiovascular diseases’ HumGenet2021; 66:67–74.
9. WilliamsRR, HuntSC, HeissG, ProvinceMA, BensenJT, HigginsM, etal. Usefulness of cardiovascular family history data for population-based preventive Medicine and medical research (the health family tree study and the NHLBI family heart study).AmJ Cardiol2001; 87:129 35.
10. Lloyd-Jones DM, NamBH, SrD’AgostinoRB, Levy D, MurabitoJM, WangTJ, et al. Parental cardiovascular diseases a risk factor for cardiovascular disease in middle-aged adults: prospective study of parents and off spring.JAMA 2004; 291:2204–11.
11. Yeboah J, McClellandRL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, etal. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA 2012; 308:788–95.
12. MusunuruK, KathiresanS. Genetics of common, complex coronary artery disease.Cell2019; 177:132–45.
13. ElkonR, AgamiR. Characterization of noncoding regulatory DNA in the human genome.NatBiotechnol2017; 35:732–46.
14. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol2010; 28:1057–68.
15. McPhersonR, Tybjaerg-HansenA. Genetics of coronary artery disease.CircRes 2016; 118:564–78.
16. KathiresanS, Srivastava D. Genetics of human cardiovascular disease. Cell 2012; 148:1242–57.
17. TurcotV, Lu Y, Highl and HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 2018; 50:26–41.
18. ZdravkovicS, WienkeA, PedersenNL, MarenbergME, YashinAI, De FaireU. Heritability of death from coronary heart disease:a36-yearfollow-up of20 966Swedishtwins. J Intern Med2002;252:247–54.
19. KinoshitaM, Yokote K, AraiH, Iida M, Ishigaki Y, Ishibashi S, et al. Japan atherosclerosis society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases2017.J AtherosclerThromb2018;25:846–984.
20. Harada-Shiba M, Arai H, Ishigaki Y, Ishibashi S, Okamura T, Ogura M, etal. Guidelinesfor diagnosis and treatment of familial hypercholesterolemia 2017.J Atheroscler Thromb 2018; 25: 751–70.
21. TadaH, TakamuraM, KawashiriMA. Familial hypercholesterolemia: anarrative review on diagnosis and managements trategies for children and adolescents. Vasc Health Risk Manag 2021; 17:59–67.
22. Tada H, HoriM, NomuraA, HosomichiK, NoharaA, KawashiriMA, etal.A catalogofthe pathogenic mutations of LDL receptor gene in Japanese familial hyper cholesterolemia .J ClinLipidol2020; 14:346–51.
23. TadaH, KawashiriMA, NoharaA, Inazu A, MabuchiH, YamagishiM. Impact Of clinical signs and genetic diagnosis of familial hyper cholesterolaemiaonthe prevalence of coronary artery disease in patients with severe hyper cholesterolaemia. EurHeartJ 2017; 38:1573–9.
24. Tada H, OkadaH, NomuraA, UsuiS, Sakata K, NoharaA, et al. Clinical diagnostic criteria of familial hypercholesterolemia - a comparison of the Japan atherosclerosis society and Dutch lipid clinic network criteria. CircJ 2021; 85:891–7.
25. TadaH, ShibayamaJ, NishikawaT, OkadaH, NomuraA, UsuiS, etal. Prevalence, self-awareness, and LDL cholesterol levels among patients highly suspected as familial hypercholesterolemiain aJapanese community. Pract Lab Med2020; 22:e00181.
26. BeheshtiSO, MadsenCM, VarboA, NordestgaardBG. Worldwide prevalence of familial hypercholesterolemia: meta-analysesof11millionsubjects.J AmColl Cardiol2020; 75:2553–66.
27. HuP, DharmayatKI, Stevens CAT, Sharabiani MTA, Jones RS, WattsGF, et al. Prevalence of familial hypercholesterolemiaamong the general population and patients with atherosclerotic cardiovascular disease: systematic reviewandmeta-analysis.Circulation2020;141:1742–59.
28. Luirink IK, WiegmanA, Kusters DM, HofMH, Groothoff JW, de GrootE, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. NEnglJ Med2019; 381:1547–56.
29. TadaH, OkadaH, NomuraA, NoharaA, YamagishiM, TakamuraM, etal.Prognostic impact of cascade screening for familial hypercholesterolemia on cardiovascular events’ Clin Lipidol 2021;15:358–65.
30. NomuraA, EmdinCA, WonHH, PelosoGM, Natarajan, ArdissinoD, etal. Heterozygous ABCG5gene deficiency and risk of coronary artery disease.Circ Genom PrecisMed2020; 13:417–23.
31. TadaH, KawashiriMA. Genetic variations, triglycerides, and atherosclerotic disease AtherosclerThromb2019;26:128–31.
32. Tada H, Takamura M, KawashiriMA. Genomics of hypertriglyceridemia. Adv Clin Chem 2020;97:141–69.
33. KheraAV, WonHH, PelosoGM, O’DushlaineC, LiuD, StitzielNO, etal. Association of rare and common variation in the lipoprotein lipase gene with Coronary artery disease.JAMA 2017;317:937–46.
34. DoR, StitzielNO, WonHH, Jørgensen AB, DugaS, AngelicaMerliniP, etal.Exomes sequencing identifies rare LDL Rand APOA5 alleles conferring risk for myocardial infarction. Nature 2015; 518:102–6.
35. ClarkeR, PedenJF, HopewellJC, KyriakouT, Goel A, Heath SC, et al. Genetic variants associated with Lp(a)lipoprotein level and coronary disease. NEnglJ Med2009;361:2518–28.
36. CrosbyJ, PelosoGM, AuerPL, CrosslinDR, StitzielNO, LangeLA, etal.Loss-of– functionmutationsin APOC3,triglycerides,andcoronarydisease.NEnglJ Med 2014;371:22–31.
37. Saleheen D, NatarajanP, Armean IM, Zhao W, Rasheed A, Khetarpal SA, etal. Human knock out sandphenotypicanalysisin acohortwithahighrate ofconsanguinity.Nature2017;544:235–9.
38. Stitziel NO, Khera AV, WangX, Bierhals AJ, Vourakis AC, Sperry AE, etal. ANGPTL 3deficiency and protection against coronary artery disease Am CollCardiol2017;69:2054–63.
39. NomuraA, WonHH, KheraAV, Takeuchi F, Ito K, McCarthyS, et al. Protein-truncating variant satthe cholestery lester transfer protein gene and risk for coronary heart disease. Circ Res 2017;121:81–8.
40. PelosoGM, NomuraA, KheraAV, ChaffinM, WonHH, ArdissinoD, etal.Rare protein-truncating variants in APOB,lower low-density lipoprotein cholesterol, and protection against coronary heart disease.Circ Genom PrecisMed 2019;12:e002376.
41. KawashiriMA, Tada H, HashimotoM, Taniyama M, NakanoT, NakajimaK, etal. Extreme contras to fpost prandial lremnant-like particles for medin abetalipo proteinemia and homozygous familial hypobetalipoproteinemia.JIMD Rep 2015;22:85–94.
42. StitzielNO, WonHH, MorrisonAC, PelosoGM, DoR, etal., Myocardial Infarction Genetics Consortium Investigators Inactivating mutations in NPC1L1and protection from coronary heart disease. Engle Med2014;371:2072–82.
43. BennM, NordestgaardBG, GrandeP, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L,low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses.J Am Coll Cardiol 2010;55:2833–42.
44. TadaH, OkadaH, NomuraA, NoharaA, TakamuraM, KawashiriMA. Ahealthy family of familial hypo beta lipopr oteinemia caused by a protein-truncating variant in the PCSK9gene.Intern Med2020; 59:783–7.
45. HowsonJMM, ZhaoW, BarnesDR, HoWK, YoungR, PaulDS, etal.Fifteen newriskloci for coronary artery disease highlight arterial-wall-specific mechanisms.NatGenet2017; 49:1113–19.
46. KlarinD, ZhuQM, EmdinCA, ChaffinM, HornerS, McMillanBJ, etal.Genetic analysisin UKBiobanklinks insulin resistance andtransendothelial migration pathwaysto coronaryarterydisease.NatGenet2017;49:1392–7.
47. vanderHarstP, VerweijN. Identification of 64 novel genetic loci providesan expandedviewonthegeneticarchitectureofcoronaryarterydisease.CircRes 2018;122:433–43.
48. RipattiS, TikkanenE, Orho-MelanderM, HavulinnaAS, SilanderK, SharmaA, etal. Amultilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses.Lancet2010;376:1393–400.
49. MegaJL, StitzielNO, SmithJG, ChasmanDI, CaulfieldM, DevlinJJ, etal.Geneticrisk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lance 2015; 385:2264–71.
50. TadaH, MelanderO, LouieJZ, CataneseJJ, RowlandCM, DevlinJJ, etal.Risk prediction by genetic risk scores for coronary heart disease is independent of self-reportedfamily history.EurHeartJ 2016;37:561–7.
51. TadaH, ShiffmanD, SmithJG, SjögrenM, LubitzSA, EllinorPT, etal.Twelve-single nucleotide polymorphism genetic risk score identifies individuals at increased risk for future atrialfibrillationandstroke.Stroke2014;45:2856–62.
52. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, etal. Genome-wide polygenic scores for common diseases identify individuals with riske quivalentto monogenicmutations.NatGenet2018;50:1219–24.
53. Hachiya T, Hata J, Hirakawa Y, Yoshida D, Furuta Y, Kitazono T, et al. Genome-wide polygenic score and the risk of ischemic stroke in a prospective cohort: the Hisayamastudy.Stroke2020;51:759–65.
54. WangM, MenonR, MishraS, PatelAP, ChaffinM, TanneeruD, etal.Validation of agenome- wide polygenic core for coronary artery disease in South Asians. J AmCollCardiol2020;76:703–14.
55. Koyama S, Ito K, Terao C, Akiyama M, Horikoshi M, MomozawaY, et al. Population-specific and trans-ancestry genome-wide analyses identify 238 H.Tada,N.Fujino,K.Hayashietal. Journal of Cardiology79 (2022) 233–239 distinct and shared genetic risk loci for coronary artery disease.NatGenet 2020;52:1169–77.
56. NatarajanP, Young R, Stitziel NO, Padmanabhan S, Baber U, MehranR, et al. Polygenic risk score identifies subgroup withhigher burden of atherosclerosis and greaterrelativebene fit from statintherapy in the primary preventionsetting.Circulation2017;135:2091–101.
57. BaigentC, BlackwellL, Emberson J, HollandLE, ReithC, et al., Cholesterol Treatment Trialists’(CTT) Collaboration Efficacyand safety ofmoreintensive lowering of LDL cholesterol: Ameta-analysis of data from 170,000participants in 26randomisedtrials. Lancet2010; 376:1670–81.
58. KheraAV, EmdinCA, DrakeI, NatarajanP, BickAG, CookNR, etal.Genetic risk, adherence to a healthy lifestyle, and coronary disease. NEngl J Med 2016;375:2349–58.
59. FahedAC, WangM, HomburgerJR, PatelAP, BickAG, NebenCL, etal.Polygenic background modifies penetrance of monogenic variants fortier1genomic conditions. Nat Commun2020; 11:3635.
60. Tada H, OkadaH, NomuraA, Takamura M, Kawashiri MA. Beneficial effect of ezetimibe-atorvastatin combination therapy in patients with a mutation in ABCG5 or ABCG8 gene.Lipids Health Dis2020;19:3.
61. Kawamura R, Saiki H, Tada H, HataA. Acute myocardialinfarction in a 25-year-old woman with sitosterolemia.J ClinLipidol2018;12:246–9.
62. Tada H, Nomura A, Nohara A, Inazu A, Mabuchi H, Yamagishi M, et al. Post-prandial remnant lipoprotein metabolism in sitosterolemia. J AtherosclerThromb2018;25:1188–95.
63. Tada H, NoharaA, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler
64. TadaH, OkadaH, NomuraA, YashiroS, NoharaA, Ishigaki Y, etal.Rareand deleterious mutation sin ABCG5/ABCG8genes contribute to mimickingand Worsening of familial hyper cholesterolemia phenotype. CircJ 2019;83:1917–24.
65. TanakaH, WatanabeY, HiranoS, TadaH, NomuraA, KawashiriMA, etal. Sitosterolemia exhibiting severe hyper cholesterolemia with tendon xantho mas due to compound heterozygous ABCG5 gene mutations treated with ezetimibeand alirocumab.Intern Med2020; 59:3033–7.
66. ReidNJ, Brockman DG, Leonard CE, PelletierR, Khera AV. Concordance of a High polygenic score among relatives: Implications for genetic counselingand cascade screening. Circ Genom Precis Med 2021; 14:e003262.
67. AkhtarT ,BandyopadhyayD, Ghosh RK, Mondal S. Left ventricular non compaction cardiomyopathy: Recent update on genetics, usefulness of biomarker, and speckle imaging. J Cardiol2019; 73:94–5. [69] Nomura S. Genetic and non-genetic determinants of clinical phenotypes in cardiomyopathy.J Cardiol2019; 73:187–90.
68. WuJ, Sakaguchi T, Takenaka K, Toyoda F, Tsuji K, MatsuuraH, et al. A trafficking-deficient KCNQ1mutation, T587M, causes a severe phenotype of long QT syndrome by interfering with intracellular hERG transport. J Cardiol 2019; 73:343–50.
69. AibaT. Recent understanding of clinical sequencing and gene-based risks ratification in inherited primary arrhythmia syndrome Cardiol2019; 73:335–42.
70. TakedaN, KomuroI. Genetic basis of hereditary thoracic aortic aneurysms and dissections .J Cardiol2019; 74:136–43.
71. Mudd, J. O. and Kass, D. A.(2008). Tackling heart failure in the twenty-first century. Nature451, 919-928
72. Thanassoulis, G. and Vasan, R. S.(2010). Genetic cardiovascular risk prediction: will we get there? Circulation122, 2323-2334.
73. North, K. E., Howard, B. V., Welty, T. K., Best, L. G., Lee, E. T., Yeh, J. L., Fabsitz, R. R., Roman, M. J. and MacCluer, J. W.(2003). Genetic and environmental contributions to cardiovascular disease risk in American Indians: the strong heart family study. Am. J. Epidemiol.157, 303-314

Most read articles by the same author(s)