CURRENTLY TRENDING AND FUTURISTIC BIOLOGICAL MODALITIES IN THE MANAGEMENT OF DIFFERENT TYPES OF DIABETES: A COMPREHENSIVE REVIEW
Main Article Content
Keywords
Diabetes mellitus, Glycaemic Control, insulin, hypoglycaemia
Abstract
Objectives:
Diabetes mellitus (DM) is a global health issue with a rising incidence of cardiovascular, renal, ketoacidosis, and cutaneous consequences. This rising pandemic affects over 415 million people globally, with a large percentage diagnosed with type 1 diabetes. Diabetes is projected to triple by 2040, straining global healthcare systems. Malaysia anticipates 21.6% diabetes prevalence by 2020, including a notable portion of T1D cases. Inflammation and oxidative stress underlie T2D development and its consequences. Obesity increases pro-inflammatory cytokines like IL-6, which can lead to insulin resistance and T2D. In T1D and T2D, inflammation and oxidative stress can destroy pancreatic beta cells. Cardiovascular complications in T2D are linked to inflammation and oxidative stress. Insulin therapy, a significant diabetes breakthrough, poses challenges in maintaining tight glycemic control without hypoglycemia and weight gain, revealing an unmet need in diabetes care.
Methods:
This review centres on the premise that, despite the pivotal role of insulin therapy in diabetes care, it possesses limitations. The pursuit of stringent glycemic control, a cornerstone in averting diabetes-related complications, can, at times, be overshadowed by the specter of hypoglycemia—a potentially life-threatening condition. In light of these hurdles, the quest for alternative approaches or adjuncts to insulin therapy becomes imperative. Overcoming the constraints of insulin treatment mandates the development of innovative strategies.
Conclusions:
This review explores alternative biological methods aimed at delivering safer and more effective means of achieving optimal glycemic control while circumventing the drawbacks of conventional insulin administration.
References
2. Abraham EJ, Kodama S, Lin JC, Ubeda M, Faustman DL, Habener JF. Human pancreatic islet-derived progenitor cell engraftment in immunocompetent mice. Am J Pathol. 2004;164(3):817-830. doi:10.1016/S0002-9440(10)63170-7
3. Akerblom HK, Vaarala O, Hyöty H, Ilonen J, Knip M. Environmental factors in the etiology of type 1 diabetes. Am J Med Genet. 2002;115(1):18-29. doi:10.1002/ajmg.10340
4. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141-150. doi:10.1016/j.diabres.2014.04.006
5. Kubaszek A, Pihlajamäki J, Komarovski V, et al. Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes. 2003;52(7):1872-1876. doi:10.2337/diabetes.52.7.1872
6. Tokuyama Y, Sturis J, DePaoli AM, et al. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995;44(12):1447-1457. doi:10.2337/diab.44.12.1447
7. Ma K, Nunemaker CS, Wu R, Chakrabarti SK, Taylor-Fishwick DA, Nadler JL. 12-Lipoxygenase Products Reduce Insulin Secretion and {beta}-Cell Viability in Human Islets. J Clin Endocrinol Metab. 2010;95(2):887-893. doi:10.1210/jc.2009-1102
8. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-986. doi:10.1056/NEJM199309303291401
9. Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis. JAMA. 2016;316(3):313-324. doi:10.1001/jama.2016.9400
10. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016;65(2):20-29. doi:10.1016/j.metabol.2015.10.014
11. Weight gain associated with intensive therapy in the diabetes control and complications trial. The DCCT Research Group. Diabetes Care. 1988;11(7):567-573. doi:10.2337/diacare.11.7.567
12. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51 Suppl 3:S368-S376. doi:10.2337/diabetes.51.2007.s368
13. Sola D, Rossi L, Schianca GP, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840-848. doi:10.5114/aoms.2015.53304
14. Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157(9):601-610. doi:10.7326/0003-4819-157-9-201211060-00003
15. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81-98. doi:10.2165/11534750-000000000-00000
16. Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243-253. doi:10.2133/dmpk.23.243
17. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333-1340. doi:10.1124/dmd.107.014902
18. Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851-1860. doi:10.1016/j.bcp.2005.09.011
19. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(11):820-827. doi:10.1097/FPC.0b013e3283559b22
20. Chandel NS, Avizonis D, Reczek CR, et al. Are Metformin Doses Used in Murine Cancer Models Clinically Relevant?. Cell Metab. 2016;23(4):569-570. doi:10.1016/j.cmet.2016.03.010
21. Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care. 2013;36 Suppl 2(Suppl 2):S162-S174. doi:10.2337/dcS13-2003
22. Defronzo RA, Tripathy D, Schwenke DC, et al. Prevention of diabetes with pioglitazone in ACT NOW: physiologic correlates. Diabetes. 2013;62(11):3920-3926. doi:10.2337/db13-0265
23. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2007;292(3):E871-E883. doi:10.1152/ajpendo.00551.2006
24. Jearath V, Vashisht R, Rustagi V, Raina S, Sharma R. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction. J Pharmacol Pharmacother. 2016;7(1):41-43. doi:10.4103/0976-500X.179363
25. Singh AK. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J Endocrinol Metab. 2014;18(6):753-759. doi:10.4103/2230-8210.141319
26. Pathak R, Bridgeman MB. Dipeptidyl Peptidase-4 (DPP-4) Inhibitors In the Management of Diabetes. P T. 2010;35(9):509-513.
27. Brunton S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other?. Int J Clin Pract. 2014;68(5):557-567. doi:10.1111/ijcp.12361
28. Bunck MC, Cornér A, Eliasson B, et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care. 2011;34(9):2041-2047. doi:10.2337/dc11-0291
29. Stonehouse AH, Darsow T, Maggs DG. Incretin-based therapies. J Diabetes. 2012;4(1):55-67. doi:10.1111/j.1753-0407.2011.00143.x
30. Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24(1):275-286. doi:10.1185/030079908x253870
31. Reed J, Bain S, Kanamarlapudi V. Recent advances in understanding the role of glucagon-like peptide 1. F1000Res. 2020;9:F1000 Faculty Rev-239. Published 2020 Apr 6. doi:10.12688/f1000research.20602.1
32. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology [published correction appears in Diabetes Ther. 2015 Mar;6(1):95]. Diabetes Ther. 2014;5(2):355-366. doi:10.1007/s13300-014-0089-4
33. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515-531. doi:10.1210/er.2010-0029
34. Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587-597. doi:10.1161/CIRCULATIONAHA.113.005081
35. Peng BY, Dubey NK, Mishra VK, et al. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res. 2018;2018:7806435. Published 2018 Jun 25. doi:10.1155/2018/7806435
36. Bhansali A, Upreti V, Khandelwal N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009;18(10):1407-1416. doi:10.1089/scd.2009.0164
37. Voltarelli JC, Couri CE, Stracieri AB, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568-1576. doi:10.1001/jama.297.14.1568
38. Giannopoulou EZ, Puff R, Beyerlein A, et al. Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: a non-randomized, controlled trial. Pediatr Diabetes. 2014;15(2):100-109. doi:10.1111/pedi.12072
39. Bani Hamad FR, Rahat N, Shankar K, Tsouklidis N. Efficacy of Stem Cell Application in Diabetes Mellitus: Promising Future Therapy for Diabetes and Its Complications. Cureus. 2021;13(2):e13563. Published 2021 Feb 26. doi:10.7759/cureus.13563
40. Birtwistle L, Chen XM, Pollock C. Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury. Int J Mol Sci. 2021;22(12):6596. Published 2021 Jun 20. doi:10.3390/ijms22126596
41. Sun YL, Shang LR, Liu RH, et al. Therapeutic effects of menstrual blood-derived endometrial stem cells on mouse models of streptozotocin-induced type 1 diabetes. World J Stem Cells. 2022;14(1):104-116. doi:10.4252/wjsc.v14.i1.104
42. Kawada-Horitani E, Kita S, Okita T, et al. Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade. Diabetologia. 2022;65(7):1185-1197. doi:10.1007/s00125-022-05708-3
43. El-Sawah SG, Rashwan HM, Althobaiti F, et al. AD-MSCs and BM-MSCs Ameliorating Effects on The Metabolic and Hepato-renal Abnormalities in Type 1 Diabetic Rats. Saudi J Biol Sci. 2022;29(2):1053-1060. doi:10.1016/j.sjbs.2021.09.067
44. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms [published correction appears in Circ Res. 2005 Aug 5;97(3):e51]. Circ Res. 2004;94(5):678-685. doi:10.1161/01.RES.0000118601.37875.AC
45. Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol Sci. 2020;41(9):653-664. doi:10.1016/j.tips.2020.06.009
46. Zhou N, Liu W, Zhang W, et al. Wip1 regulates the immunomodulatory effects of murine mesenchymal stem cells in type 1 diabetes mellitus via targeting IFN-α/BST2. Cell Death Discov. 2021;7(1):326. Published 2021 Oct 29. doi:10.1038/s41420-021-00728-1
47. von Scholten BJ, Kreiner FF, Gough SCL, von Herrath M. Current and future therapies for type 1 diabetes. Diabetologia. 2021;64(5):1037-1048. doi:10.1007/s00125-021-05398-3
48. Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C. Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther. 2010;21(3):241-250. doi:10.1089/hum.2010.014
49. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230-238. doi:10.1056/NEJM200007273430401
50. Marfil-Garza BA, Hefler J, Verhoeff K, et al. Pancreas and Islet Transplantation: Comparative Outcome Analysis of a Single-centre Cohort Over 20-years [published correction appears in Ann Surg. 2023 Aug 1;278(2):e429]. Ann Surg. 2023;277(4):672-680. doi:10.1097/SLA.0000000000005783
51. Pepper AR, Bruni A, Shapiro AMJ. Clinical islet transplantation: is the future finally now?. Curr Opin Organ Transplant. 2018;23(4):428-439. doi:10.1097/MOT.0000000000000546
52. Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13(5):268-277. doi:10.1038/nrendo.2016.178
53. Lemos JRN, Baidal DA, Ricordi C, Fuenmayor V, Alvarez A, Alejandro R. Survival After Islet Transplantation in Subjects With Type 1 Diabetes: Twenty-Year Follow-Up. Diabetes Care. 2021;44(4):e67-e68. doi:10.2337/dc20-2458
54. Vantyghem MC, Chetboun M, Gmyr V, et al. Ten-Year Outcome of Islet Alone or Islet After Kidney Transplantation in Type 1 Diabetes: A Prospective Parallel-Arm Cohort Study [published correction appears in Diabetes Care. 2020 May;43(5):1164]. Diabetes Care. 2019;42(11):2042-2049. doi:10.2337/dc19-0401
55. Marfil-Garza BA, Shapiro AMJ, Kin T. Clinical islet transplantation: Current progress and new frontiers. J Hepatobiliary Pancreat Sci. 2021;28(3):243-254. doi:10.1002/jhbp.891
56. Markmann JF, Rickels MR, Eggerman TL, et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. Am J Transplant. 2021;21(4):1477-1492. doi:10.1111/ajt.16174
57. Wisel SA, Gardner JM, Roll GR, et al. Pancreas-After-Islet Transplantation in Nonuremic Type 1 Diabetes: A Strategy for Restoring Durable Insulin Independence. Am J Transplant. 2017;17(9):2444-2450. doi:10.1111/ajt.14344
58. Verhoeff K, Henschke SJ, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells. 2021;10(2):278. Published 2021 Jan 30. doi:10.3390/cells10020278
59. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26:443–452.
60. Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121-1133. doi:10.1038/nbt.3033
61. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol. 2020;38(4):460-470. doi:10.1038/s41587-020-0430-6
62. Pepper AR, Bruni A, Pawlick R, et al. Posttransplant Characterization of Long-term Functional hESC-Derived Pancreatic Endoderm Grafts. Diabetes. 2019;68(5):953-962. doi:10.2337/db18-0788
63. Marfil-Garza BA, Polishevska K, Pepper AR, Korbutt GS. Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. Compr Physiol. 2020;10(3):839-878. Published 2020 Jul 8. doi:10.1002/cphy.c190033
64. Bose S, Volpatti LR, Thiono D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng. 2020;4(8):814-826. doi:10.1038/s41551-020-0538-5
65. Vegas AJ, Veiseh O, Gürtler M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice [published correction appears in Nat Med. 2016 Apr;22(4):446]. Nat Med. 2016;22(3):306-311. doi:10.1038/nm.4030
66. Yu M, Agarwal D, Korutla L, et al. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nat Metab. 2020;2(10):1013-1020. doi:10.1038/s42255-020-0269-7
67. Liu Q, Chiu A, Wang L, et al. Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation. Biomaterials. 2020;230:119640. doi:10.1016/j.biomaterials.2019.119640
68. Mallol C, Casana E, Jimenez V, et al. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab. 2017;6(7):664-680. Published 2017 May 17. doi:10.1016/j.molmet.2017.05.007
69. Hill DJ, Hogg J. Expression of insulin-like growth factors (IGFs) and their binding proteins (IGF BPs) during pancreatic development in rat, and modulation of IGF actions on rat islet DNA synthesis by IGF BPs. Adv Exp Med Biol. 1992;321:113-122. doi:10.1007/978-1-4615-3448-8_12
70. Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol. 2016;99(6):1131-1140. doi:10.1189/jlb.3A0815-371RRR
71. Parikh A, Stephan AF, Tzanakakis ES. Regenerating proteins and their expression, regulation and signaling. Biomol Concepts. 2012;3(1):57-70. doi:10.1515/bmc.2011.055
72. Chen R, Meseck ML, Woo SL. Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol Ther. 2001;3(4):584-590. doi:10.1006/mthe.2001.0299
73. Rao P, Cozar-Castellano I, Roccisana J, Vasavada RC, Garcia-Ocaña A. Hepatocyte growth factor gene therapy for islet transplantation. Expert Opin Biol Ther. 2004;4(4):507-518. doi:10.1517/14712598.4.4.507
74. Lin Y, Sun Z. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes. Diabetes. 2015;64(12):4298-4311. doi:10.2337/db15-0066
75. Samson SL, Chan L. Gene therapy for diabetes: reinventing the islet. Trends Endocrinol Metab. 2006;17(3):92-100. doi:10.1016/j.tem.2006.02.002
76. Yechoor V, Liu V, Paul A, et al. Gene therapy with neurogenin 3 and betacellulin reverses major metabolic problems in insulin-deficient diabetic mice. Endocrinology. 2009;150(11):4863-4873. doi:10.1210/en.2009-0527
77. Xie A, Li R, Jiang T, et al. Anti-TCRβ mAb in Combination With Neurogenin3 Gene Therapy Reverses Established Overt Type 1 Diabetes in Female NOD Mice. Endocrinology. 2017;158(10):3140-3151. doi:10.1210/en.2016-1947
78. Song S, Goudy K, Campbell-Thompson M, et al. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther. 2004;11(2):181-186. doi:10.1038/sj.gt.3302156
79. Yoon JW, Jun HS. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002;8(2):62-68. doi:10.1016/s1471-4914(02)02279-7
80. Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16(Suppl 3):S549-S555. doi:10.4103/2230-8210.105571
81. Penaranda C, Tang Q, Bluestone JA. Anti-CD3 Therapy Promotes Tolerance by Selectively Depleting Pathogenic Cells While Preserving Regulatory T Cells. J Immunol (2011) 187(4):2015–22. doi: 10.4049/jimmunol.1100713
82. Chatenoud L, Thervet E, Primo J, Bach J-F. Anti-CD3 Antibody Induces Long-Term Remission of Overt Autoimmunity in Nonobese Diabetic Mice. Proc Natl Acad Sci (1994) 91(1):123–7. doi: 10.1073/pnas.91.1.123
83. Kung P, Goldstein G, Reinherz EL, Schlossman SF. Monoclonal Antibodies Defining Distinctive Human T Cell Surface Antigens. Science (1979) 206(4416):347–9. doi: 10.1126/science.314668
84. Kuhn C, Weiner HL. Therapeutic Anti-CD3 Monoclonal Antibodies: From Bench to Bedside. Immunotherapy (2016) 8(8):889–906. doi: 10.2217/imt-2016-0049
85. Haller, M.J., Schatz, D.A., Skyler, J.S., Krischer, J.P., Bundy, B.N., Miller, J.L., Atkinson, M.A., Becker, D.J., Baidal, D., DiMeglio, L.A., et al.; Type 1 Diabetes TrialNet ATG-GCSF Study Group (2018). Low-Dose Anti-Thymocyte Globulin (ATG) Preserves b-Cell Function and Improves HbA1c in New-Onset Type 1 Diabetes. Diabetes Care 41, 1917–1925.
86. Haller, M.J., Long, S.A., Blanchfield, J.L., Schatz, D.A., Skyler, J.S., Krischer, J.P., Bundy, B.N., Geyer, S.M., Warnock, M.V., Miller, J.L., et al.; Type 1 Diabetes TrialNet ATG-GCSF Study Group (2019). Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 68, 1267–1276.
87. Pescovitz MD, Greenbaum CJ, KrauseSteinrauf H, et al.; Type 1 Diabetes TrialNet Anti-CD20 Study Group. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 2009; 361:2143–2152
88. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and Immune Function. Nutrients (2013) 5(7):2502–21. doi: 10.3390/nu5072502
89. Du T, Zhou ZG, You S, Huang G, Lin J, Yang L, et al. Modulation of Monocyte Hyperresponsiveness toTLR Ligandsby1,25-DihydroxyVitamin D3 From LADA and T2DM. Diabetes Res Clin practice. (2009) 83(2):208–14. doi: 10.1016/j.diabres.2008.09.046
90. Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, et al. UKPDS 25: Autoantibodies to Islet-Cell Cytoplasm and Glutamic Acid Decarboxylase for Prediction of Insulin Requirement in Type 2 Diabetes. UK Prospective Diabetes Study Group. Lancet (London England) (1997) 350 (9087):1288–93. doi: 10.1016/S0140-6736(97)03062-6
91. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to Glutamic Acid Decarboxylase Reveal Latent Autoimmune Diabetes Mellitus in Adults With a non-Insulin-Dependent Onset of Disease. Diabetes (1993) 42(2):359–62. doi: 10.2337/diab.42.2.359
92. Li X, Liao L, Yan X, Huang G, Lin J, Lei M, et al. Protective Effects of 1Alpha-Hydroxyvitamin D3 on Residual Beta-Cell Function in Patients With Adult-Onset Latent Autoimmune Diabetes (LADA). Diabetes/Metabolism Res Rev (2009) 25(5):411–6. doi: 10.1002/dmrr.977
93. Serra P, Santamaria P. Antigen-Specific Therapeutic Approaches for Autoimmunity. Nat Biotechnol (2019) 37(3):238–51. doi: 10.1038/s41587-019-0015-4
94. Smith EL, Peakman M. Peptide Immunotherapy for Type 1 Diabetes—Clinical Advances. Front Immunol (2018) 9:392. doi: 10.3389/fimmu.2018.00392
95. Daniel C, Weigmann B, Bronson R, von Boehmer H. Prevention of Type 1 Diabetes in Mice by Tolerogenic Vaccination With a Strong Agonist Insulin Mimetope. J Exp Med (2011) 208(7):1501–10. doi: 10.1084/jem.20110574
96. Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci (2020) 21(19):7015. doi: 10.3390/ijms21197015
97. Nikolic T, Zwaginga JJ, Uitbeijerse BS, Woittiez NJ, de Koning EJ, Aanstoot H-J, et al. Safety and Feasibility of Intradermal Injection With Tolerogenic Dendritic Cells Pulsed With Proinsulin Peptide—for Type 1 Diabetes. Lancet Diabetes Endocrinol (2020) 8(6):470–2. doi: 10.1016/S2213-8587(20)30104-2
98. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 Reverses Established Type 1 Diabetes in NOD Mice by a Local Effect on Pancreatic Regulatory T Cells. J Exp Med (2010) 207(9):1871–8. doi: 10.1084/jem.20100209
99. Marcovecchio ML, Wicker LS, Dunger DB, Dutton SJ, Kopijasz S, Scudder C, et al. Interleukin-2 Therapy of Autoimmunity in Diabetes (ITAD): A Phase 2, Multicentre, Double-Blind, Randomized, Placebo-Controlled Trial. Wellcome Open Res (2020) 5. doi: 10.12688/wellcomeopenres.15697.1
100. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103. doi:10.1038/nature12198
101. Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58(10):2206-2217. doi:10.1007/s00125-015-3712-7
102. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943-951. doi:10.1007/s00125-017-4278-3
103. Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice [published correction appears in ISME J. 2010 Feb;4(2):312-3]. ISME J. 2010;4(2):232-241. doi:10.1038/ismej.2009.112
104. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691-14696. doi:10.1073/pnas.1005963107
105. Chen Z, Drouin-Chartier JP, Li Y, et al. Changes in Plant-Based Diet Indices and Subsequent Risk of Type 2 Diabetes in Women and Men: Three U.S. Prospective Cohorts. Diabetes Care. 2021;44(3):663-671. doi:10.2337/dc20-1636
106. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. Published 2017 Apr 8. doi:10.1186/s12967-017-1175-y
107. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062-1072. doi:10.3945/ajcn.110.002188
108. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, et al. Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. J Clin Endocrinol Metab. 2016;101(1):233-242. doi:10.1210/jc.2015-3351
109. Ghosh TS, Rampelli S, Jeffery IB, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218-1228. doi:10.1136/gutjnl-2019-319654
110. Caio G, Lungaro L, Segata N, et al. Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients. 2020;12(6):1832. Published 2020 Jun 19. doi:10.3390/nu12061832
111. Dinh P, Tran C, Dinh T, et al. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn 2023; 1–14.
112. Boytar AN, Skinner TL, Wallen RE, Jenkins DG, Dekker Nitert M. The Effect of Exercise Prescription on the Human Gut Microbiota and Comparison between Clinical and Apparently Healthy Populations: A Systematic Review. Nutrients. 2023;15(6):1534. Published 2023 Mar 22. doi:10.3390/nu15061534
113. Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72(2):572-576. doi:10.1271/bbb.70474
114. Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3):e92193. Published 2014 Mar 26. doi:10.1371/journal.pone.0092193
115. Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism [published correction appears in Food Funct. 2017 Oct 18;8(10):3814]. Food Funct. 2017;8(9):3155-3164. doi:10.1039/c7fo00593h
116. Singh S, Sharma RK, Malhotra S, Pothuraju R, Shandilya UK. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef Microbes. 2017;8(2):243-255. doi:10.3920/BM2016.0090
117. Manzoor U, Ali A, Ali SL, et al. Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: clinical insights and phenotypic effects. J Genet Eng Biotechnol 2023; 21: 1–11.