PHYTOCRYSTALLIZATION OF SILVER NANOPARTICLES USING CASSIA ALATA FOR EFFECTIVE CONTROL OF FUNGAL SKIN PATHOGENS

Main Article Content

Mahalingam Jeyakumar
Kulanthaivel Langeswaran
Saranya Arumugam
Bharatha Rathna Pillappan
Durai Deepika

Keywords

Silver nanoparticles, Antifungal, Cassia alata, Human Fibroblast cell line

Abstract

The primary objective of the present study is to synthesis and characterization silver nanoparticles using Cassia alata aqueous flower extract and investigate the antifungal activity and cytotoxicity study. Cassia alata aqueous flower extract have been effectively used for the synthesis of silver nanoparticles and demonstrated the efficacy of Cassia alata flower as natural renewable and low costing bioreduction agent of silver. The characterizations of AgNPs such as UV-visible, FTIR, SEM, EDX and XRD. We have synthesized AgNPs of 20 nm in size with spherical shape using aqueous extract of Cassia alata. AgNPs synthesized by flower extract were very distinct with very small size, crystalline nature and clearly proved their biomedical importance by exhibiting strong antifungal activity against skin pathogens. In addition cell line study reveals that low concentration of AgNPs was showed a 98% cell viability. Thus AgNPs possess important applications in biomedical or pharmaceutical industry for the preparation of antifungal skin ointments.

Abstract 173 | pdf Downloads 85

References

1. Gaddam, S. A., Kotakadi, V. S., Sai Gopal, D. V. R., Subba Rao, Y., & Varada Reddy, A. (2014). Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry, 4, 1-9.
2. Pal, A., Shah, S., & Devi, S. (2009). Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Materials Chemistry and Physics, 114(2-3), 530-532.
3. Lubaina, A. S., & Murugan, K. (2013). Physiological and biochemical characterization of Senna alata (L.) Roxb. leaf extract-a plant based fungicide against Alternaria leaf spot in sesame. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 2(6), 5790-5801.
4. Oladele, A. T., Dairo, B. A., Elujoba, A. A., & Oyelami, A. O. (2010). Management of superficial fungal infections with Senna alata (“alata”) soap: A preliminary report. African Journal of. Pharmacy and Pharmacology, 4(3), 98-103.
5. Vijayakumari, A., & Sinthiya, A. (2018). Biosynthesis of phytochemicals coated silver nanoparticles using aqueous extract of leaves of Cassia alata–characterization, antibacterial and antioxidant activities. International Journal of Pharmaceutical and Clinical Research, 10(5), 138-149.
6. Akinde, B.E. Okeke, I. Orafidiya, O.O. (1999). Phytochemical and antibacterial evaluations of Cassia alata leaves-extracts. African Journal Of Medical Pharmacy Science, 1, 38–43. 1999
7. Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., ... & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical Reviews, 116(6), 3722-3811.
8. Alalor, C. A., Igwilo, C. I., & Jeroh, E. (2012). Evaluation of the antibacterial properties of aqueous and methanol extracts of Cassia alata. Journal of Pharmacy and Allied Health Sciences, 2(2), 40.
9. Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99.
10. Bankalgi, S. C., Londonkar, R. L., Madire, U., & Tukappa, N. A. (2016). Biosynthesis, characterization and antibacterial effect of phenolics-coated silver nanoparticles using Cassia javanica L. Journal of Cluster Science, 27, 1485-1497.
11. Sun, C., Lee, J. S., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252-1265.
12. Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18-23.
13. Indhumathy, D., Seshaiah, C. V., & Sukkiramathi, K. (2014). Estimation of Weibull Parameters for Wind speed calculation at Kanyakumari in India. 3 (1), 8340-8345
14. EA, A., Adeoti, T. M., Ayandele, B., & Jimoh, A. R. (2014). Clinical response of broilers placed on varying levels of aqueous Cassia alata leaf extract. 8,(12),.520-522.
15. Boulc'h, F., Schouler, M. C., Donnadieu, P., Chaix, J. M., & Djurado, E. (2001). Domain size distribution of Y-TZP nano-particles using XRD and HRTEM. Image Analysis & Stereology, 20(3), 157-161.
16. Gangula, A., Podila, R., Karanam, L., Janardhana, C., & Rao, A. M. (2011). Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 27(24), 15268-15274.
17. Varghese, G. K., Bose, L. V., & Habtemariam, S. (2013). Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies. Pharmaceutical Biology, 51(3), 345-349.
18. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981-2988.
19. Lee, H. B., Kim, E. K., Park, S. J., Bang, S. G., Kim, T. G., & Chung, D. W. (2011). Isolation and anti‐inflammatory effect of astragalin synthesized by enzymatic hydrolysis of tea seed extract. Journal of the Science of Food and Agriculture, 91(13), 2315-2321.
20. Okoro, I. O., Osagie, A., & Asibor, E. O. (2010). Antioxidant and antimicrobial activities of polyphenols from ethnomedicinal plants of Nigeria. African Journal of Biotechnology, 9(20).
21. Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A., & Schultz, S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116(15), 6755-6759.
22. Santos, K. D. O., Elias, W. C., Signori, A. M., Giacomelli, F. C., Yang, H., & Domingos, J. B. (2012). Synthesis and catalytic properties of silver nanoparticle–linear polyethylene imine colloidal systems. The Journal of Physical Chemistry C, 116(7), 4594-4604.
23. Rajendran, K., Rajendran, C. P., Kesavan, S., & Naveen, R. (2012). Recent microtremors near the Idukki reservoir, Kerala, South India. Current Science, 1446-1451.
24. Aissa, M. A. B., Tremblay, B., Andrieux-Ledier, A., Maisonhaute, E., Raouafi, N., & Courty, A. (2015). Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization. Nanoscale, 7(7), 3189-3195.
25. Balashanmugam, P. &P. Kalaichelvan, T. (2015). “Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity,” International Journal of Nanomedicine.10 (1), 87.
26. Jayasree, R., Prathiba, R., & Sangavi, S. (2016). Immunomodulatory effect of Cassia alata petals in Garra rufa (doctor fish). Journal of Chemical and Pharmaceutical, 9(1), 215-218.
27. Konwarh, R., Karak, N., Sawian, C. E., Baruah, S., & Mandal, M. (2011). Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface. Carbohydrate Polymers, 83(3), 1245-1252.
28. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
29. Murugan, R., & Parimelazhagan, T. (2014). Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn.–An in vitro approach. Journal of King Saud University-Science, 26(4), 267-275.
30. Gaddam, S. A., Kotakadi, V. S., Sai Gopal, D. V. R., Subba Rao, Y., & Varada Reddy, A. (2014). Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry, 4, 1-9.
31. Joshi, S. G. (2000). Medicinal plants Oxford and IBH Publishing Co. pvt. New Delhi. 227.
32. Dubey, S. P., Lahtinen, M., & Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45(7), 1065-1071.
33. Timothy, S. Y., Wazis, C. H., Adati, R. G., & Maspalma, I. D. (2012). Antifungal activity of aqueous and ethanolic leaf extracts of Cassia alata Linn. Journal of Applied Pharmaceutical Science, 2(7), 182-185.
34. Edison, T. J. I., & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47(9), 1351-1357.
35. Someya, T., Sano, K., Hara, K., Sagane, Y., Watanabe, T., & Wijesekara, R. G. S. (2018). Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant (Ocimum tenuiflorum), malabar nut plant (Justicia adhatoda), and emblic myrobalan plant (Phyllanthus emblica). Data in Brief, 17, 24-46.
36. Quattrocchi, U. (2012). CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology (5 Volume Set). CRC press.
37. Netala, V. R., Kotakadi, V. S., Domdi, L., Gaddam, S. A., Bobbu, P., Venkata, S. K., ... & Tartte, V. (2016). Biogenic silver nanoparticles: efficient and effective antifungal agents. Applied Nanoscience, 6, 475-484.
38. Netala, V. R., Kotakadi, V. S., Nagam, V., Bobbu, P., Ghosh, S. B., & Tartte, V. (2015). First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Applied Nanoscience, 5, 801-807.
39. Neharkar, V. S., & Gaikwad, K. G. (2011). Hepatoprotective activity of Cassia alata (Linn.) leaves against paracetamol-induced hepatic injury in rats. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2(1), 783-788.
40. Sule, W. F., Okonko, I. O., Omo-Ogun, S., Nwanze, J. C., Ojezele, M. O., Ojezele, O. J., ... & Olaonipekun, T. O. (2011). Phytochemical properties and in-vitro antifungal activity of Senna alata Linn. crude stem bark extract. The Journal of Medicinal Plants Research, 5(2), 176-183.