EFFICACY OF NARINGIN IN PROTECTING CARDIAC H9C2 CELLS FROM HYPERGLYCEMIC DAMAGE: POTENTIAL IMPLICATIONS FOR DIABETIC CARDIOMYOPATHY TREATMENT

Main Article Content

Amer Mahmood
Randa AL-Ibrahim
Mona Elsafadi
Manikandan Muthurangan
Abdul-Aziz Siyal
Randa Alfotawi

Keywords

.

Abstract

Diabetes mellitus (DM) represents a pressing public health challenge globally, with profound implications in both developed and developing nations. It stands as one of the most pervasive and severe chronic conditions worldwide. This study delves into the potential therapeutic effects of naringin on H9c2 cardiac cells subjected to elevated glucose levels, specifically exploring its viability as a treatment for diabetic cardiomyopathy.


Methods: For our experiment, we prepared a final concentration of 80.0 μM of NAR in distilled water, subsequently stored at 4.0°C. H9c2 cardiac cells, derived from embryonic rat ventricles, were cultured in DMEM supplemented with FBS, D-Glucose. In this study we simulated Diabetic Cardiomyopathy by exposing the cells to high D-Glucose concentrations. Viability was assessed using the AlamarBlue assay, while ROS production was detected using the DCFH–DA dye. RNA from treated and control cells was isolated to test different genes.


Results and discussion: In summary, pre-treatment of H9c2 cardiomyocytes with 80.0 μM concentrations of both Naringenin and Naringin, prior to high glucose exposure, proved most effective, especially concerning the upregulation of the Bcl-2 anti-apoptotic gene. The present study explored the adverse impacts of high glucose (HG) on H9c2 cardiomyocyte cells, evidenced by symptoms like cytotoxicity, apoptosis, oxidative stress, and mitochondrial malfunctions, further underlined by a reduced cell viability. We discovered a pronounced linkage between the surge in reactive oxygen species (ROS) production and HG-driven cardiomyocyte damage.


Conclusion: Naringenin (NAR) at 80.0 μM concentration, when pre-treated on H9c2 cardiomyocytes prior to high glucose exposure, effectively upregulates the Bcl-2 anti-apoptotic gene, offering protection against hyperglycemia-triggered cardiac damages by reducing ROS activity and cell apoptosis. The study reaffirms previous findings linking elevated HG levels to cardiomyocyte damage, emphasizing that an 80.0 μM NAR treatment for 2.0 hours is the most potent countermeasure against diabetic cardiomyopathy.

Abstract 71 | PDF Downloads 35

References

1. Pozzo, E., Costa, B., Cavallini, C., Testai, L., Martelli, A., Calderone, V., & Martini, C. (2017). The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. Oxidative medicine and cellular longevity, 2017, 9536148. doi: 10.1155/2017/9536148
2. Qin, W., Ren, B., Wang, S., Liang, S., He, B., Shi, X., Wang, L., Liang, J., & Wu, F. (2016). Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose. Vascular Pharmacology, 85, 39-49. doi: 10.1016/ j.vph.2016.07.006Chen, W., Sun, Q., Ju, J., Chen, W., Zhao, X., Zhang, Y., & Yang, Y. (2018). Astragalus polysaccharides inhibit oxidation in high glucose-challenged or SOD2-silenced H9C2 cells. Diabetes, metabolic syndrome and obesity: targets and therapy, 11, 673-681. doi: 10.2147/DMSO.S177269
3. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. doi: 10.1016/j.diabres.2018.02.023
4. Davis, E. F., Lazdam, M., Lewandowski, A. J., Worton, S. A., Kelly, B., Kenworthy, Y., Adwani, S., Wilkinson, A., McCormick, K., Sargent, I., Redman, C., & Leeson, P. (2012). Cardiovascular Risk Factors in Children and Young Adults Born to Preeclamptic Pregnancies: A Systematic Review. Pediatrics, 129 (6), 1552- 1561. doi: 10.1542/peds.2011-3093
5. Dawish, M. A. A., Robert, A. A., Braham, R., Hayek, A. A., Saeed, A. A., Ahmed, R. A., & Sabaan, F. S. (2016). Diabetes Mellitus in Saudi Arabia: A Review of the Recent Literature. Current Diabetes Reviews, 12 (4), 359–368. doi: 10.2174/1573399811666150724095130
6. Rajadurai, M., Long, K., Xie, L. M., & Prince, P. (2007). Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats: A transmission electron microscopic study. Journal of Biochemical and Molecular Toxicology, 21 (6), 354-361. doi: 10.1002/jbt.20203
7. Rampersad, S. N. (2012). Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel, Switzerland), 12 (9), 12347-12360. doi: 10.3390/s120912347
8. Rani, N., Saurabh, B., Bhaskar, K., Jagriti, B., Charu, S., Mohammad Amjad, K., & Dharamvir Singh, A. (2016). Pharmacological Properties and Therapeutic Potential of Naringenin: A Citrus Flavonoid of Pharmaceutical Promise. Current Pharmaceutical Design, 22 (28), 4341-4359. doi: 10.2174/1381612822666
9. Celiz, G., Daz, M., & Audisio, M. C. (2011). Antibacterial activity of naringin derivatives against pathogenic strains. Journal of Applied Microbiology, 111 (3), 731-738. doi: 10.1111/j.1365-2672.2011.05070.x
10. Chanet, A., Milenkovic, D., Deval, C., Potier, M., Constans, J., Mazur, A., Bennetau, C., Morand, C., & Bérard, A. M. (2012). Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. The Journal of Nutritional Biochemistry, 23 (5), 469-477. Doi: 10.1016/j.jnutbio.2011.02.001
11. Duncan, J. G. (2011). Mitochondrial dysfunction in diabetic cardiomyopathy. Biochimica et biophysica acta, 1813 (7), 1351-1359. doi: 10.1016/j.bbamcr.2011.01.014
12. Ekambaram, G., Rajendran, P., Magesh, V., & Sakthisekaran, D. (2008). Naringenin reduces tumor size and weight lost in N-methyl-N′-nitro-N-nitrosoguanidine– induced gastric carcinogenesis in rats. Nutrition Research, 28 (2), 106-112. doi: 10.1016/j.nutres.2007.12.002
13. Han, X., Yoshizaki, K., Miyazaki, K., Arai, C., Funada, K., Yuta, T., Tian, T., Chiba, Y., Saito, K., Iwamoto, T., Yamada, A., & Fukumoto, S. (2018). The transcription factor NKX2-3 mediates p21 expression and ectodysplasin-A signaling in the enamel knot for cusp formation in tooth development. The Journal of biological chemistry, 293 (38), 14572-14584. doi: 10.1074/jbc.RA118.00337
14. Hartogh, S. C., Schreurs, C., Monshouwer-Kloots, J. J., Davis, R. P., Elliott, D. A., Mummery, C. L., & Passier, R. (2014). Dual Reporter MESP1mCherry/w- NKX2-5eGFP/w hESCs Enable Studying Early Human Cardiac Differentiation. STEM CELLS, 33 (1), 56-67. doi: 10.1002/stem.1842
15. Heo, H. J., Kim, M., Lee, J., Choi, S. J., Cho, H., Hong, B., & Shin, D. (2004). Naringenin from Citrus junos Has an Inhibitory Effect on Acetylcholinesterase and a Mitigating Effect on Amnesia. Dementia and Geriatric Cognitive Disorders, 17 (3), 151-157. doi: 10.1159/000076349
16. Galloway, C. A., & Yoon, Y. (2015). Mitochondrial dynamics in diabetic cardiomyopathy. Antioxidants & redox signaling, 22 (17), 1545-1562. doi: 10.1089/ars.2015.6293
17. Gao, S., Li, P., Yang, H., Fang, S., & Su, W. (2010). Antitussive Effect of Naringin on Experimentally Induced Cough in Guinea Pigs. Planta Medica, 77 (01), 16-21. doi: 10.1055/s-0030-1250117
18. García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research, 58 (9), 537-552. doi: 10.1007/s00011-009-0037-3
19. Gay, M. S., Dasgupta, C., Li, Y., Kanna, A., & Zhang, L. (2016). Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene. The Journal of pharmacology and experimental therapeutics, 358 (2), 190-198. doi: 10.1124/jpet.116.234104
20. Goldwasser, J., Cohen, P. Y., Lin, W., Kitsberg, D., Balaguer, P., Polyak, S. J., Chung, R., Yarmush, M., & Nahmias, Y. (2011). Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR- mediated mechanism. Journal of hepatology, 55 (5), 963-971. doi: 10.1016/j. jhep.2011.02.011
21. Grosso, C., Valentão, P., Ferreres, F., & Andrade, P. B. (2013). The Use of Flavonoids in Central Nervous System Disorders. Current Medicinal Chemistry, 20 (37), 4694-4719. doi: 10.2174/09298673113209990155
22. Gu, X., Fang, T., Kang, P., Hu, J., Yu, Y., Li, Z., Cheng, X., & Gao, Q. (2017). Effect of ALDH2 on High Glucose-Induced Cardiac Fibroblast Oxidative Stress, Apoptosis, and Fibrosis. Oxidative medicine and cellular longevity, 2017, 1-12. doi: 10.1155/2017/9257967
23. Gul, K., Celebi, A. S., Kacmaz, F., Ozcan, O. C., Ustun, I., Berker, D., Aydin, Y., Delibasi, T., Guler, S., & Barazi, A. O. (2009). Tissue Doppler imaging must be performed to detect early left ventricular dysfunction in patients with type 1
24. diabetes mellitus. European Journal of Echocardiography, 10 (7), 841-846. doi: 10.1093/ejechocard/jep086
25. Gulsin, G. S., Athithan, L., & McCann, G. P. (2019). Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Therapeutic advances in endocrinology and metabolism, 10, 2042018819834869. doi: 10.1177/20420188 19834869
26. Han, X. (2012). Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes. BioScience Trends, 6 (1), 19-25. doi: 10.5582/bst.2012.v6.1.19