Main Article Content

Shivi Tyagi
Srishtishree Mani
Neelam Chaturvedi




Flowering and fruiting plants as well as vegetative organs contain the water-soluble vacuolar pigments known as anthocyanins. They impart the distinctive red-to-blue color to fruits and vegetables. The foundation of anthocyanin use is the extraction and purification of anthocyanins from natural plants. To advance our understanding of anthocyanins, it is necessary to continually analyze the studies as well as their potential applications. The impact of various extraction and purification methods on the rate and purity of anthocyanin extraction were examined in this paper along with the most recent advancements in anthocyanin extraction and purification research. The review's findings can serve as a basis for scientific and industrial research. Due to their health advantages, such as the ability to combat oxidative stress, possessing antibacterial qualities, and preventing noncommunicable illnesses, they are frequently utilized as natural food colorants and have the potential to be nutraceutical additions

Abstract 273 | pdf Downloads 54


1. Alvarez-Suarez, J. M., Cuadrado, C., Redondo, I. B., Giampieri, F., González-Paramás, A. M., & Santos-Buelga, C. (2021). Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends in Food Science & Technology, 117, 92-105.

2. Ayvaz, H., Cabaroglu, T., Akyildiz, A., Pala, C. U., Temizkan, R., Ağçam, E., Ayvaz, Z., Durazzo, A., Lucarini, M., Direito, R., & Diaconeasa, Z. (2022). Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel, Switzerland), 12(1), 48

3. Azman, E. M., Charalampopoulos, D., & Chatzifragkou, A. (2020). Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. Journal of Food Science, 85(11), 3745-3755.

4. Belwal T., Singh G., Jeandet P., Pandey A., Giri L., Ramola S., Bhatt I.D., Venskutonis P.R., Georgiev M., Clément C., et al. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol. Adv. 2020;43:107600.

5. Biata, N. R., Mashile, G. P., Ramontja, J., Mketo, N., and Nomngongo, P. N. (2019). Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination. J. Food Comp. Anal. 76, 14–21.

6. Brown JE, Kelly MF. Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation products. Eur J Lipid Sci Technol. 2017;109(1):66–71

7. Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants (Basel, Switzerland), 10(12), 1967

8. Faria A., Pestana D., Azevedo J., Martel F., De Freitas V., Azevedo I., Mateus N., Calhau C. Absorption of anthocyanins through intestinal epithelial cells-Putative involvement of GLUT2. Mol. Nutr. Food Res. 2009;53:1430–1437.

9. Fernandez-Aulis F., Hernandez-Vazquez L., Aguilar-Osorio G., Arrieta-Baez D., Navarro-Ocan A. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019;84:954–962.

10. Hellström, J., Mattila, P., & Karjalainen, R. (2013). Stability of anthocyanins in berry juices stored at different temperatures. Journal of Food Composition and Analysis, 31(1), 12-19.

11. Hidalgo I.J., Raub T.J., Borchardt R.T. Characterization of the human-colon carcinoma cell-line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–749.

12. Huang W., Yan Z., Li D., Ma Y., Zhou J., Sui Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. Oxid. Med. Cell. Longev. 2016;2016:1862462.

13. Jiao, X., Li, B., Zhang, Q., Gao, N., Zhang, X., & Meng, X. (2018). Effect of in vitro‐simulated gastrointestinal digestion on the stability and antioxidant activity of blueberry polyphenols and their cellular antioxidant activity towards HepG2 cells. International Journal of Food Science & Technology, 53(1), 61-71.

14. Jim Fang. 2014. Bioavailability of Anthocyanins. drug Metabolism Reviews. 46(4): 508-520.

15. Khoo H., Ng H., Yap W.-S., Goh H., Yim H. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants. 2017;8:85.

16. Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1361779.

17. Kozłowska, A., & Dzierżanowski, T. (2021). Targeting inflammation by anthocyanins as the novel therapeutic potential for chronic diseases: An update. Molecules, 26(14), 4380.

18. Krishna, P.-G.-A.; Sivakumar, T.-R.; Jin, C.; Li, S.-H.; Weng, Y.-J.; Yin, J.; Gui, -Z.-Z. Antioxidant and Hemolysis Protective Effects of Polyphenol-Rich Extract from Mulberry Fruits. Pharmacogn. Mag. 2018, 14, 103.

19. Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. 2017 Jun;174(11):1226-1243.

20. Liu C., Sun J., Lu Y., Bo Y. Effects of anthocyanin on serum lipids in dyslipidemia patients: A systematic review and meta-analysis. PLoS ONE. 2016;11(9)
21. Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2019;2:17023.

22. Manzano S., Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol. Nutr. Food Res. 2010;54:1773–1780.

23. Martín J., Kuskoski E.M., Navas M.J., Asuero A.G. Antioxidant Capacity of Anthocyanin Pigments. In: Justino J., editor. Flavonoids—From Biosynthesis to Human Health. Science, Technology and Medicine Open Access Publisher; Rijeka, Croatia: 2017. pp. 205–255.

24. Moein, M., Zahra, S., & Fatemeh, F. (2017). Isolation and determination of antioxidant capacities of anthocyanin from Rosa canina fruits. Обзоры по клинической фармакологии и лекарственной терапии, 15(Спецвыпуск 1), 43-44.

25. Mozos I., Malainer C., Horbańczuk J., Gug C., Stoian D., Luca C.T., Atanasov A.G. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front. Immunol. 2017;8:1058.

26. Muche, B. M., Speers, R. A., & Rupasinghe, H. V. (2018). Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of “Merlot” and “Ruby” grapes (Vitis vinifera). Frontiers in nutrition, 5, 100.

27. Nomi Y, Iwasaki-Kurashige K, Matsumoto H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules. 2019 Sep 11;24(18):3311.

28. Nunes, A. N., Borges, A., Matias, A. A., Bronze, M. R., & Oliveira, J. (2022). Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules, 27(2), 368

29. Ockermann, P., Headley, L., Lizio, R., & Hansmann, J. (2021). A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health. Nutrients, 13(8), 2831.

30. Oliveira J., Azevedo J., Teixeira N., Araújo P., de Freitas V., Basílio N., Pina F. On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations. J. Agric. Food Chem. 2021;69:1359–1367.

31. Qin Z., Wang X., Gao J., Guo Y., Huang Z., Du Y. The tomato hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS ONE. 2016;11:e0151067.

32. Rehman S.U., Shah S.A., Ali T., Chung J.I., Kim M.O. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 2017;54:255–271.

33. Riaz, M., Zia-Ul-Haq, M., & Saad, B. (2016). Anthocyanins and human health: biomolecular and therapeutic aspects (Vol. 10, pp. 978-3). Switzerland: Springer.

34. Rodriguez-Mateos A., Vauzour D., Krueger C.G., Shanmuganayagam D., Reed J., Calani L., Mena P., Del Rio D., Crozier A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014;88:1803–1853.

35. Santos-Buelga C., Mateus N., De Freitas V. Anthocyanins. Plant pigments and beyond. J. Agric. Food Chem. 2016;62:6879–6884.

36. Sarkar, R., Kundu, A., Banerjee, K., & Saha, S. (2018). Anthocyanin composition and potential bioactivity of karonda (Carissa carandas L.) fruit: An Indian source of biocolorant. LWT, 93, 673-678.

37. Sendri, N., Singh, S., Sharma, B., Purohit, R., & Bhandari, P. (2023). Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism. Food chemistry, 426, 136571.

38. Sikorski Z. Fennema’s Food Chemistry (Fifth Edition)—Edited by Srinivasan Damodaran and Kirk L. Parkin. J. Food Biochem. 2018;42:e12483
39. Smeriglio A, Bareca D, Belloccoco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016;30(8):1256–1286.

40. Song, D. H., Gu, T. W., & Kim, H. W. (2021). Quality Characteristics of Senior-Friendly Gelatin Gels Formulated with Hot Water Extract from Red Maple Leaf as a Novel Anthocyanin Source. Foods 2021, 10, 3074.

41. Sonia de Pascual-Teresa and Maria Teresa Sanchez-Ballesta Anthocyanins: from plant to health. Phytochem Rev (2008) 7:281–299

42. Tan C., Dadmohammadi Y., Lee M.C., Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr. Rev. Food Sci. Food Saf. 2021;20:3164–3191.

43. Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review Journal of Agriculture and Food Research, 8, 100306.Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research, 8, 100306.

44. Tan, J., Li, Q., Xue, H., & Tang, J. (2020). Ultrasound‐assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. Journal of food science, 85(11), 3731-3744.

45. Teixeira R.F., Benvenutti L., Burin V.M., Gomes T.M., Ferreira S.R.S., Ferreira-Zielinski A.A. An eco-friendly pressure liquid extraction method to recover anthocyanins from broken black bean hulls. Innov. Food Sci. Emerg. Technol. 2021;67:102587.

46. Tena, N., & Asuero, A. G. (2022). Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel, Switzerland), 11(2), 286.

47. Türker, D. A., & Doğan, M. (2022). Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from black carrots: Optimization, cytotoxicity, in-vitro bioavailability and stability. Food and Bioproducts Processing, 132, 99-113.

48. Vicente Dragano, N.R.; Castro Marques, A.Y. Chapter 11—Native Fruits, Anthocyanins in Nutraceuticals, and the Insulin Receptor/Insulin Receptor Substrate-1/Akt/Forkhead Box Protein Pathway. In Molecular Nutrition and Diabetes; Mauricio, D., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 131–145.

49. Vilhena R., Figueiredo I., Baviera A., Silva D., Marson B., Oliveira J., Peccinini R., Borges I., Pontarolo R. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. J. Ethnopharmacol. 2020;254:112666.

50. Wang D., Xia M., Yan X., Li D., Wang L., Xu Y., Jin T., and Ling W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 2012;111:967–981.

51. Xue, H., Tan, J., Li, Q., Tang, J., & Cai, X. (2021). Ultrasound-assisted enzymatic extraction of anthocyanins from raspberry wine residues: process optimization, isolation, purification, and bioactivity determination. Food Analytical Methods, 14, 1369-1386.

52. Yang, F. X., Xu, P., Yang, J. G., Liang, J., Zong, M. H., & Lou, W. Y. (2016). Efficient separation and purification of anthocyanins from saskatoon berry by using low transition temperature mixtures. RSC advances, 6(106), 104582-104590.

53. Zhao X., Feng P., He W., Du X., Chen C., Suo L., Liang M., Zhang N., Na A., Zhang Y. The Prevention and Inhibition Effect of Anthocyanins on Colorectal Cancer Curr. Pharm. Des. 2020;25:4919–4927.

54. Zhao, X., & Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro Chemistry & Biodiversity, 18(10), e2100399.

55. Zielinska, M., & Michalska, A. (2016) Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, color, and texture Food Chemistry, 212, 671-680.