Main Article Content

Anupriya Jose
Dr.M.A Shah


Multiplex Polymer Chain, Rapid Sensing, Mycobacterium Tuberculosis, Polymerase Chain Reaction, TB


This thesis serves as a showcase for the research techniques that were used to the study of the Mycobacterium tuberculosis complex. The identification of Mycobacterium tuberculosis was the primary emphasis, with the medicines pattern analysis providing a glimpse into the thesis analysis. Information was obtained at random between 2020 and 2023. A total of 158 participants across a wide age range participated in the study. High rates of first-line anti-tuberculosis medications were also seen in the study's follow-up. The case of Mycobacterium tuberculosis is summarised. Mycobacterium tuberculosis, when not linked to a host cell, takes on a thin, rod-shaped structure similar to the mycelium of a fungus. A rod between three and thirty centimetres in length, it might be either straight or slightly curved. Having a solitary, couple, or small group existence. Its final dimensions are established by the environment in which it develops. In damp places, they progressively grow into a pellicle-like mould. Mycobacterium is the term given to bacteria because of their similarity to fungus. They are oxygen-tolerant but incapable of locomotion or encapsulation. It is an obligate aerobe, a saprophyte, and an opportunistic pathogen. Evidence of TB-related degeneration in spinal column fragments from 2400 BCE Egyptian mummies shows that M. tuberculosis has been present in human populations for thousands of years. In 1650, tuberculosis

(TB) was known as "consumption," and it was recognized as the leading cause of mortality

Abstract 118 | pdf Downloads 62


1. Ai, J. W., Zhou, X., Xu, T., Yang, M., Chen, Y., He, G. Q., et al. (2019). CRISPR-based rapid and ultra-sensitive diagnostic test for mycobacterium tuberculosis. Emerg. Microbes Infect. 8, 1361–1369. doi: 10.1080/22221751.2019.1664939
2. Ayubi, E., Doosti-Irani, A., Sanjari Moghaddam, A., Sani, M., Nazarzadeh, M., and Mostafavi, E. (2016). The clinical usefulness of tuberculin skin test versus interferon-gamma release assays for diagnosis of latent tuberculosis in HIV patients: a meta-analysis. PLoS One 11:e0161983
3. Babin, B. M., Fernandez-Cuervo, G., Sheng, J., Green, O., Ordonez, A. A., Turner, M. L., et al. (2021). Chemiluminescent protease probe for rapid, sensitive, and inexpensive detection of live mycobacterium tuberculosis. ACS Cent Sci. 7, 803–814.
4. Benachinmardi, K. K., Sangeetha, S., Rao, M., and Prema, R. (2019). Validation and clinical application of interferon-gamma release assay for diagnosis of latent tuberculosis infection in children. Int. J. Appl. Basic Med. Res. 9, 241–245. doi: 10.4103/ijabmr.IJABMR_86_19
5. Bentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., et al. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infect. Dis. 16:517.
6. Barnard M, Gey van Pittius NC, van Helden PD, Bosman M, Coetzee G, et al. (2012) The diagnostic performance of the GenoType MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J. Clin. Microbiol 50: 3712-3716. ( Barnard et al., 2012)
7. Cao, X. J., Li, Y. P., Wang, J. Y., Zhou, J., and Guo, X. G. (2021). MPT64 assays for the rapid detection of mycobacterium tuberculosis. BMC Infect. Dis. 21:336. doi: 10.1186/s12879-021-06022-w
8. Cao, Z., Wu, W., Wei, H., Gao, C., Zhang, L., Wu, C., et al. (2020). Using droplet digital PCR in the detection of mycobacterium tuberculosis DNA in FFPE samples. Int. J. Infect. Dis. 99, 77–83
9. Chakravorty, S., Simmons, A. M., Rowneki, M., Parmar, H., Cao, Y., Ryan, J., et al. (2017). The new Xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio 8, e00812–e00817
10. Chen, D., Bryden, W. A., and Wood, R. (2020). Detection of tuberculosis by the analysis of exhaled breath particles with high-resolution mass spectrometry. Sci. Rep. 10:7647. doi: 10.1038/s41598-020-64637-6
11. Cheng, Y., Xie, J., Lee, K. H., Gaur, R. L., Song, A., Dai, T., et al. (2018). Rapid and specific labeling of single live mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci. Transl. Med. 10:eaar4470
12. Cho, S. M., Shin, S., Kim, Y., Song, W., Hong, S. G., Jeong, S. H., et al. (2020). A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR. Clin. Microbiol. Infect. 26, 942.e1–942.e5.
13. Chand Wattal (2016) “Utility of multiplex real-time PCR in the diagnosis of extra pulmonary tuberculosis” The Brazilian Journal of INFECTIOUS DISEASES, Clark M, Vynnycky E. The use of maximum likelihood methods to estimate the risk of tuberculous infection and disease in a Canadian First Nations population. International Journal of Epidemiology. 2004 (Clark et al., 2004)
14. Dahiya, B., Prasad, T., Singh, V., Khan, A., Kamra, E., Mor, P., et al. (2020). Diagnosis of tuberculosis by nanoparticle-based immuno-PCR assay based on mycobacterial MPT64 and CFP-10 detection. Nanomedicine (Lond.) 15, 2609–2624.
15. Dahiya, B., Sharma, S., Khan, A., Kamra, E., Mor, P., Sheoran, A., et al. (2020). Detection of mycobacterial CFP-10 (Rv3874) protein in tuberculosis patients by gold nanoparticle-based real-time immuno-PCR. Future Microbiol. 15, 601–612
16. Doyle, R. M., Burgess, C., Williams, R., Gorton, R., Booth, H., Brown, J., et al. (2018). Direct whole-genome sequencing of sputum accurately identifies drug-resistant mycobacterium tuberculosis faster than MGIT culture sequencing. J. Clin. Microbiol. 56, e00666–e00618.
17. Fan, J., Zhang, H., Nguyen, D. T., Lyon, C. J., Mitchell, C. D., Zhao, Z., et al. (2017). Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the greater Houston metropolitan area. BMC Med. 15:188.
18. Gidado, M., Nwokoye, N., Ogbudebe, C., Nsa, B., Nwadike, P., Ajiboye, P., et al. (2019). Assessment of GeneXpert MTB/RIF performance by type and level of health-care facilities in Nigeria. Niger. Med. J. 60, 33–39.
19. Hatami, Z., Ragheb, E., Jalali, F., Tabrizi, M. A., and Shamsipur, M. (2020). Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Bioelectrochemistry 133:107458.
20. Hira, J., Uddin, M. J., Haugland, M. M., and Lentz, C. S. (2020). From differential stains to next generation physiology: chemical probes to visualize bacterial cell structure and physiology. Molecules 25:4949.
21. Iketleng, T., Lessells, R., Dlamini, M. T., Mogashoa, T., Mupfumi, L., Moyo, S., et al. (2018). Mycobacterium tuberculosis next-generation whole genome sequencing: opportunities and challenges. Tuberc Res Treat. 2018, 1–8
22. Jaroenram, W., Kampeera, J., Arunrut, N., Karuwan, C., Sappat, A., Khumwan, P., et al. (2020). Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of mycobacterium tuberculosis. J. Pharm. Biomed. Anal. 186:113333.
23. Jiang, W., Huang, J., Liu, Y., Ren, L., Li, S., Zhuang, L., et al. (2020). Early view highly sensitive and specific diagnosis of transcription multiple cross displacement amplification-labelled nanoparticles biosensor. Eur. Respir. J. 56:2002060. doi: 10.1183/13993003.02060-2020
24. Jacobson RH, (2019) Principles and methods of validation of diagnostic assays for infectious diseases. Man. Diagnostic Tests Vaccines Terr. (Jacobson ,2019)
25. Kahng, S. J., Soelberg, S. D., Fondjo, F., Kim, J. H., Furlong, C. E., and Chung, J. H. (2020). Carbon nanotube-based thin-film resistive sensor for point-of-care screening of tuberculosis. Biomed. Microdevices 22:50
26. Kamariza, M., Shieh, P., Ealand, C. S., Peters, J. S., Chu, B., Rodriguez-Rivera, F. P., et al. (2018). Rapid detection of mycobacterium tuberculosis in sputum with a solvatochromic trehalose probe. Sci. Transl. Med. 10:aam6310.
27. Kenaope, L., Ferreira, H., Seedat, F., Otwombe, K., Martinson, N. A., and Variava, E. (2020). Sputum culture and drug sensitivity testing outcome among X-pert mycobacterium tuberculosis/rifampicin-positive, rifampicin-resistant sputum: a retrospective study not all rifampicin resistance is multi-drug resistant. J. Glob. Antimicrob. Resist. 21, 434–438
28. Kuypers, J., and Jerome, K. R. (2017). Applications of digital PCR for clinical microbiology. J. Clin. Microbiol. 55, 1621–1628.
29. Li, S., Liu, C., Liu, Y., Ma, Q., Wang, Y., and Wang, Y. (2019). Development of a multiple cross displacement amplification combined with nanoparticles-based biosensor assay to detect neisseria meningitidis. Infect. Drug Resist. 12, 2077–2087. doi: 10.2147/IDR.S210735
30. Lyashchenko, K. P., Sridhara, A. A., Johnathan-Lee, A., Sikar-Gang, A., Lambotte, P., Esfandiari, J., et al. (2020). Differential antigen recognition by serum antibodies from three bovid hosts of Mycobacterium bovis infection. Comp. Immunol. Microbiol. Infect. Dis. 69:101424.
31. Lekhak, S. P., Sharma, L., Rajbhandari, R., Rajbhandari, P., Shrestha, R., and Pant, B. (2016). Evaluation of multiplex PCR using MPB64 and IS6110 primers for rapid diagnosis of tuberculous meningitis. Tuberculosis 100, 1–4.
32. Luo, J., Luo, M., Li, J., Yu, J., Yang, H., Yi, X., et al. (2019). Rapid direct drug susceptibility testing of mycobacterium tuberculosis based on culture droplet digital polymerase chain reaction. Int. J. Tuberc. Lung Dis. 23, 219–225
33. Wilkinson, S., Besra, G. S., and Goldberg, O. P. (2020). Tuberculosis diagnostics: overcoming ancient challenges with modern solutions. Emerg. Top. Life Sci. 4, 423–436.
34. Mehta, P. K., Dahiya, B., Sharma, S., Singh, N., Dharra, R., Thakur, Z., et al. (2017). Immuno-PCR, a new technique for the serodiagnosis of tuberculosis. J. Microbiol. Methods 139, 218–229.
35. Mohd Bakhori, N., Yusof, N. A., Abdullah, J., Wasoh, H., Ab Rahman, S. K., and Abd Rahman, S. F. (2019). Surface enhanced CdSe/ZnS QD/SiNP electrochemical Immunosensor for the detection of mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials 13:149.
36. Montoya, A., March, C., Montagut, Y. J., Moreno, M. J., Manclus, J. J., Arnau, A., et al. (2017). A high fundamental frequency (HFF)-based QCM Immunosensor for tuberculosis detection. Curr. Top. Med. Chem. 17, 1623–1630.
37. Majlessi L, Brodin P, Brosch R, Rojas MJ, Khun H, et al. (2005) Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol 174: 3570-3579. (Majlessi et al., 2020)
38. N’guessan, K., Horo, K., Coulibaly, I., Adegbele, J., Kouame-Adjei, N., Seck-Angu, H., et al. (2016). Rapid detection of Mycobacterium tuberculosis complex in sputum Samples using PURE TB-LAMP assay. Int. J. Mycobacteriol. 5, S164–S165
39. Kong, C., Yu, W., Wang, H., Ma, Y., Li, X., et al. (2019). Nitrooxidoreductase Rv2466c-dependent fluorescent probe for mycobacterium tuberculosis diagnosis and drug susceptibility testing. ACS Infect Dis. 5, 949–961.
40. Papaventsis, D., Casali, N., Kontsevaya, I., Drobniewski, F., Cirillo, D. M., and Nikolayevskyy, V. (2017). Whole genome sequencing of mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin. Microbiol. Infect. 23, 61–68
41. Patterson, B., Morrow, C., Singh, V., Moosa, A., Gqada, M., Woodward, J., et al. (2017). Detection of mycobacterium tuberculosis bacilli in bioaerosols from untreated TB patients. Gates Open Res. 1:11
42. Quan, S., Qi, H., Wang, X., Wang, G., Wang, Y., Sun, L., et al. (2021). Development and preliminary application of multiplex loop-mediated isothermal amplification coupled with lateral flow biosensor for detection of mycobacterium tuberculosis complex. Front. Cell. Infect.
43. Microbiol. 11:666492.
44. Sreedeep, K. S., Sethi, S., Yadav, R., Vaidya, P. C., Angurana, S. K., Saini, A., et al. (2020). Loop-mediated isothermal amplification (LAMP) in the respiratory specimens for the diagnosis of pediatric pulmonary tuberculosis: A pilot study. J. Infect. Chemother. 26, 823–830.
45. Song, Y., Ma, Y., Liu, R., Shang, Y., Ma, L., Huo, F., et al. (2021). Diagnostic yield of oral swab testing by TB-LAMP for diagnosis of pulmonary tuberculosis. Infect. Drug Resist. 14, 89–95
46. S chermer, B., Fabretti, F., Damagnez, M., Di Cristanziano, V., Heger, E., Arjune, S., et al. (2020). Rapid SARS-CoV-2 testing in primary material based on a novel multiplex RT-LAMP assay. PLoS One 15:e0238612. doi: 10.1371/journal.pone.0238612
47. Scott, C., Cavanaugh, J. S., Silk, B. J., Ershova, J., Mazurek, G. H., LoBue, P. A., et al. (2017). Comparison of sputum-culture conversion for Mycobacterium bovis and M. Tuberculosis. Emerg. Infect. Dis. 23, 456–462. doi: 10.3201/eid2303.161916
48. Sun Y, Lou S, Wen J, Lv W, Jiao C, et al. (2011) Clinical value of polymerase chain reaction in the diagnosis of joint tuberculosis by detecting the DNA of Mycobacterium tuberculosis. (Sun et al., 2011)
49. Sharma, K., Sharma, M., Batra, N., Sharma, A., and Dhillon, M. S. (2017). Diagnostic potential of multi-targeted LAMP (loop-mediated isothermal amplification) for osteoarticular tuberculosis. J. Orthop. Res. 35, 361–365. doi: 10.1002/jor.23293
50. Sharma, M., Sharma, K., Sharma, A., Gupta, N., and Rajwanshi, A. (2016). Loop-mediated isothermal amplification (LAMP) assay for speedy diagnosis of tubercular lymphadenitis: The multi-targeted 60-minute approach. Tuberculosis 100, 114–117. doi: 10.1016/
51. Rao, J., Su, R., Peng, Y., Guo, Y., Huang, Z., Ye, Y., et al. (2021). Low-density granulocytes affect T-SPOT.TB assay by inhibiting the production of interferon-γ in T cells via PD-L1/PD-1 pathway. Front. Microbiol. 11:622389.
52. Ren, N., JinLi, J., Chen, Y., Zhou, X., Wang, J., Ge, P., et al. (2018). Identification of new diagnostic biomarkers for mycobacterium tuberculosis and the potential application in the serodiagnosis of human tuberculosis. Microb. Biotechnol. 11, 893–904
53. Singh, N., Dahiya, B., Radhakrishnan, V. S., Prasad, T., and Mehta, P. K. (2018). Detection of mycobacterium tuberculosis purified ESAT-6
54. (Rv3875) by magnetic bead-coupled gold nanoparticle-based immuno-PCR assay. Int. J. Nanomedicine 13, 8523–8535
55. Sua, L. F., Bolaños, J. E., Maya, J., Sánchez, A., Medina, G., Zúñiga-Restrepo, V., et al. (2021). Detection of mycobacteria in paraffin-embedded Ziehl-Neelsen-stained tissues using digital pathology. Tuberculosis 126:102025