ANTI-INFLAMMATORY ACTIVITIES OF SOME NEWER HETEROCYCLIC DERIVATIVES

Main Article Content

Dr. Pravin Suradkar
Raj Shekhar
Dr. Amit Gangwal
Dr. Lorika Sahu
Dr. Anima Rout

Keywords

Anti-inflammatory properties, NSAIDs, ADMET analysis, Albino rats

Abstract

Inflammation is a complicated biological reaction to damaging stimuli such as infections, poisons, and physical damage. NSAIDs and corticosteroids are commonly used to manage inflammation. NSAIDs function by reducing the COX enzyme activity, which has the role in the formation of prostaglandins, a kind of pro-inflammatory mediator. Most nonsteroidal anti-inflammatory medicines (NSAIDs) are very acidic in nature and are associated with a variety of adverse effects, the most prevalent of which is gastrointestinal damage. Moreover, recently developed NSAIDS are either non-acidic or weakly acidic drug like Nabumetone, Nemuliside and meloxicam possessed substantially lower incidence of gastric ulcers, hence it is worthwhile to explore synthesis of new non-steroidal anti-inflammatory inhibitors with an attempt that these newly developed. Inflammatory inhibitors will exhibit superiority over the already existing acidic anti-inflammatory,non-steroidal, andnon-acidicdrugs. According to researchers, some newer derivatives of quinazolinone, indole, naphthalene, thiadiazole, thiazolidinone, and azetidinone will be synthesized for effective anti-inflammatory agents than existing drugs. We have chosen four compounds quinazolinone, indole, naphthalene, thiadiazole against inflammation and checked the anti-inflammatory properties of these drug compounds on Albino rodents and its ADMET properties.

Abstract 293 | pdf Downloads 144

References

1. 3-Oxo-2,3-dihydro-1H-indazole-4-carboxylic acid AldrichCPR 7384-17-0. (n.d.). Retrieved April 25, 2023, from https://www.sigmaaldrich.com/IN/en/product/aldrich/ph017433?gclid=CjwKCAjw9J2iBhBPEiwAErwpebn7YlSyIlVuWxeT3EAXeF7bjWaPCF7D1Rt8LHlzN0Wl7VMy7Pps2RoChLkQAvD_BwE&gclsrc=aw.ds
2. Alagarsamy, V., Raja Solomon, V., &Dhanabal, K. (2007). Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 15(1), 235–241. https://doi.org/10.1016/J.BMC.2006.09.065
3. Amir, M., Oberoi, A., &Alam, S. (1999). Synthesis and antiinflammatory activity of some new 6-methoxy--methyl-2- naphthalene acetic acid derivatives. IJC-B Vol.38B(02) [February 1999], 38, 237–239. http://nopr.niscpr.res.in/handle/123456789/16209
4. Amir, M., & Shikha, K. (2004). Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. European Journal of Medicinal Chemistry, 39(6), 535–545. https://doi.org/10.1016/j.ejmech.2004.02.008
5. Bano, S., Javed, K., Ahmad, S., Rathish, I. G., Singh, S., &Alam, M. S. (2011). Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. European Journal of Medicinal Chemistry, 46(12), 5763–5768. https://doi.org/10.1016/J.EJMECH.2011.08.015
6. Biradar, J. S., Sasidhar, B. S., & Parveen, R. (2010). Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. European Journal of Medicinal Chemistry, 45(9), 4074–4078. https://doi.org/10.1016/J.EJMECH.2010.05.067
7. Bisht, A. S., Negi, J. S., & Sharma, D. K. (2020). Chemistry and activity of quinazoline moiety: A systematic review study. International Journal of Pharmaceutical Chemistry and Analysis, 7(2), 61–65. https://doi.org/10.18231/J.IJPCA.2020.009
8. Çalişkan, B., Luderer, S., Özkan, Y., Werz, O., &Banoglu, E. (2011). Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils. European Journal of Medicinal Chemistry, 46(10), 5021–5033. https://doi.org/10.1016/J.EJMECH.2011.08.009
9. El-Hashash, M. A. E. A., Azab, M. E., Faty, R. A. E. A., & Amr, A. E. G. E. (2016). Synthesis, Antimicrobial and Anti-inflammatory Activity of Some New Benzoxazinone and Quinazolinone Candidates. Chemical & Pharmaceutical Bulletin, 64(3), 263–271. https://doi.org/10.1248/CPB.C15-00904
10. El-Salam, O. I. A., Shalaby, A. M., El-Sawy, A. A., Elshihaby, S., Abdulla, M., El-Salam, O. I. A., Shalaby, A. M., El-Sawy, A. A., Elshihaby, S., & Abdulla, M. (2013). Synthesis of Some N-[(4-Substituted-1-Piperazinyl)-Oxo(Alkyl and Ethylcarbamoyl)]-3-(2-Thiophenyl)Acrylamides as Non-Steroidal Anti-Allergic and Anti-Inflammatory Agents. Open Journal of Synthesis Theory and Applications, 2(2), 63–72. https://doi.org/10.4236/OJSTA.2013.22008
11. F. Zayed, M., & H. Hassan, M. (2014). Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharmaceutical Journal, 22(2), 157–162. https://doi.org/10.1016/J.JSPS.2013.03.004
12. Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148. https://doi.org/10.1039/C8MD00472B
13. Hoefelmeyer, J. D., Schulte, M., Tschinkl, M., &Gabbaï, F. P. (2002). Naphthalene derivatives peri-substituted by Group 13 elements. Coordination Chemistry Reviews, 235(1–2), 93–103. https://doi.org/10.1016/S0010-8545(02)00180-7
14. Hricovíni, M., &Hricovíni, M. (2017). Photochemically-induced anti-syn isomerization of quinazolinone-derived Schiff’s bases: EPR, NMR and DFT analysis. Tetrahedron, 73(3), 252–261. https://doi.org/10.1016/J.TET.2016.12.011
15. Huang, M. H., Wu, S. N., Wang, J. P., Lin, C. H., Lu, S. I., Liao, L. F., & Shen, A. Y. (2003). Biological study of naphthalene derivatives with antiinflammatory activities. Drug Development Research, 60(4), 261–269. https://doi.org/10.1002/DDR.10327
16. Maarouf, A. R., El-Bendary, E. R., &Goda, F. E. (2004). Synthesis and Evaluation of some Novel Quinazolinone Derivatives as Diuretic Agents. Archiv Der Pharmazie, 337(10), 527–532. https://doi.org/10.1002/ARDP.200400869
17. Malik, A., Manan, A., & Mirza, M. U. (2017). Molecular docking and in silico ADMET studies of silibinin and glycyrrhetic acid anti-inflammatory activity. Tropical Journal of Pharmaceutical Research, 16(1), 67–74. https://doi.org/10.4314/tjpr.v16i1.9
18. Moldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P., Pîrnǎu, A., Crişan, O., Bojiţǎ, M., & Pop, R. (2011). Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. European Journal of Medicinal Chemistry, 46(2), 526–534. https://doi.org/10.1016/J.EJMECH.2010.11.032
19. Ni, C., Feng, K., Li, X., Zhao, H., & Yu, L. (2020). Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group. Progress in Organic Coatings, 148, 105824. https://doi.org/10.1016/J.PORGCOAT.2020.105824
20. Rakesh, K. P., Manukumar, H. M., & Gowda, D. C. (2015). Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorganic and Medicinal Chemistry Letters, 25(5), 1072–1077. https://doi.org/10.1016/J.BMCL.2015.01.010
21. RANI, B. R., BHALERAO, U. T., & RAHMAN, M. F. (1991). Synthesis and Biological Activity of Benzothiazolothiomethyl- oxadiazoles, -thiadiazoles and -triazoles. ChemInform, 22(3), no-no. https://doi.org/10.1002/CHIN.199103175
22. Sharma, S., Srivastava, V. K., & Kumar, A. (2003). Anti-inflammatory activity of some novel alpha-amino naphthalene derivatives. Arzneimittel-Forschung, 53(1), 44–52. https://doi.org/10.1055/S-0031-1297069
23. Sheehan, J. C., Chapman, D. W., & Roth, R. W. (1952). The Synthesis of Stereochemically Pure Peptide Derivatives by the Phthaioyl Method. Journal of the American Chemical Society, 74(15), 3822–3825. https://doi.org/10.1021/JA01135A031/ASSET/JA01135A031.FP.PNG_V03
24. Sondhi, S. M., Jain, S., Rani, R., & Kumar, A. (2007). Microwave assisted synthesis of indole and furan derivatives possessing good anti-inflammatory and analgesic activity. Indian Journal of Chemistry, 46, 1848–1854.
25. Sondhi, S. M., Singh, J., Rani, R., Gupta, P. P., Agrawal, S. K., & Saxena, A. K. (2010). Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. European Journal of Medicinal Chemistry, 45(2), 555–563. https://doi.org/10.1016/J.EJMECH.2009.10.042
26. Song, Y., Connor, D. T., Doubleday, R., Sorenson, R. J., Sercel, A. D., Unangst, P. C., Roth, B. D., Gilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A., & Dyer, R. D. (1999). Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 1. Thiazolone and oxazolone series. Journal of Medicinal Chemistry, 42(7), 1151–1160. https://doi.org/10.1021/JM9805081
27. Srivastava·, S. K., Srivastava, S., & Srivastava, S. D. (1999a). Synthesis of new carbazolyl-thiadiazol-2-oxo-azetidines : Antimicrobial, anticonvulsant and anti-in ammatory agents. Indian Journal of Chemistry, 38, 183–187.
28. Srivastava·, S. K., Srivastava, S., & Srivastava, S. D. (1999b). Synthesis of new carbazolyl-thiadiazol-2-oxo-azetidines : Antimicrobial, anticonvulsant and anti-inflammatory agents. IJC-B Vol.38B(02) [February 1999], 38, 183–187. http://nopr.niscpr.res.in/handle/123456789/16211
29. Tomi, I. H. R., Al-Daraji, A. H. R., Al-Qaysi, R. R. T., Hasson, M. M., & Al-Dulaimy, K. H. D. (2014). Synthesis, characterization and biological activities of some azo derivatives of aminothiadiazole derived from nicotinic and isonicotinic acids. Arabian Journal of Chemistry, 7(5), 687–694. https://doi.org/10.1016/J.ARABJC.2010.12.003
30. Verma, M., Sinha, J. N., Gujrati, V. R., Bhalla, T. N., Bhargava, K. P., & Shanker, K. (1981). A new potent anti-inflammatory quinazolone. Pharmacological Research Communications, 13(10), 967–979. https://doi.org/10.1016/S0031-6989(81)80068-9
31. Verma, M., Tripathi, M., Saxena, A., & Shanker, K. (1994). Antiinflammatory activity of novel indole derivatives. European Journal of Medicinal Chemistry, 29(12), 941–946. https://doi.org/10.1016/0223-5234(94)90193-7
32. Vigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Trovato, A., Monforte, M. T., &Taviano, M. F. (2001). Synthesis and antiinflammatory, analgesic activity of 3,3’-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorganic & Medicinal Chemistry Letters, 11(21), 2791–2794. https://doi.org/10.1016/S0960-894X(01)00476-0
33. Winter, C. A., Risley, E. A., &Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 111(3), 544–547. https://doi.org/10.3181/00379727-111-27849

Most read articles by the same author(s)