THE EFFECTS OF PHYSICAL EXERCISE IN IMPROVING COGNITIVE FUNCTION AND BRAIN-DERIVED NEUROTROPHIC FACTOR LEVELS IN PATIENTS WITH SCHIZOPHRENIA RECEIVING RISPERIDONE

Main Article Content

Erlyn Limoa
Ahmad Rais Dahyar
Saidah Syamsuddin
Arifin Seweng
Kristian Liaury
Irfan Idris
Sonny T Lisal

Keywords

schizophrenia, physical exercise, cognitive function, BDNF, risperidone

Abstract

Purpose: Increased BDNF levels induce neuroplasticity thus improving dopamine activity in the prefrontal cortex which is correlated with cognitive improvement. Risperidone combined with Physical Exercise is assumed to improve the aforementioned cognitive function and is associated with increased levels of (BDNF), a cognitive function marker in schizophrenia. This study aimed to determine the effect of physical exercise on improving cognitive function and BDNF levels in patients with schizophrenia receiving risperidone.


Methods: Forty (40) schizophrenic inpatients were divided into two groups, the treatment group, and the control group. Both groups received Risperidone 4 mg twice daily, and only the intervention group was given physical exercise for ten weeks. Cognitive function was assessed using SCoRS v BI at the baseline, the fifth, and the tenth weeks. The BDNF level was measured at the baseline and the tenth weeks. The difference in means between the group was assessed using the Mann-Whitney test.


Results: There was a significant improvement in cognitive function in both treatment groups (<0.01). However, in the BDNF levels in the treatment group that received a combination of 4 mg/day of risperidone and physical exercise for 10 weeks, the results were more significant (<0.00) than in the control group


 

Abstract 114 | pdf Downloads 79

References

1. Andrews, S. C., Curtin, D., Hawi, Z., Wongtrakun, J., Stout, J. C., & Coxon, J. P. (2020). Intensity matters: high-intensity interval exercise enhances motor cortex plasticity more than moderate exercise. Cerebral Cortex, 30(1), 101-112.
2. Di Carlo, P., Punzi, G., & Ursini, G. (2020). Brain-derived neurotrophic factor and schizophrenia. Psychiatric Genetics, 200–210. https://doi.org/10.1097/YPG.0000000000000237
3. Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage, 166, 230-238.
4. Girdler, S. J., Confino, J. E., & Woesner, M. E. (2019). Exercise as a Treatment for Schizophrenia: A Review. Psychopharmacology Bulletin, 49(1), 56–69.
5. Gökçe, E., Güneş, E., & Nalçaci, E. (2019). Effect of exercise on major depressive disorder and schizophrenia: A BDNF focused approach. Noropsikiyatri Arsivi, 56(4), 302–310. https://doi.org/10.29399/npa.23369
6. Griwijoyo, S., & Sidik, D. J. (2013). Ilmu Faal Olahraga (Fisiologi Olahraga): Fungsi Tubuh Manusia pada Olahraga untuk Kesehatan dan Prestasi. Bandung: Remaja Rosdakarya.
7. Huang, Z., Zhang, Y., Zhou, R., Yang, L., Pan, H., Müller, P., Duderstadt, Y., Lessmann, V.,
8. & Müller, N. G. (2020). Lactate as Potential Mediators for Exercise-Induced Positive Effects on Neuroplasticity and Cerebrovascular Plasticity. Frontiers in Physiology, 12(4). https://doi.org/10.3390/jcm9041136
9. Keefe, R. S. E., Poe, M., Walker, T. M., Kang, J. W., & Harvey, P. D. (2006). The schizophrenia cognition rating scale: An interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. American Journal of Psychiatry, 163(3), 426–432. https://doi.org/10.1176/appi.ajp.163.3.426
10. Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. In Kementrian Kesehatan RI 53 (9).
11. Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., ... & Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. The Journal of physiology, 568(1), 323-332.
12. Kimhy, D., Vakhrusheva, J., Bartels, M. N., Armstrong, H. F., Ballon, J. S., Khan, S., Chang, R. W., Hansen, M. C., Ayanruoh, L., Lister, A., Castrén, E., Smith, E. E., & Sloan, R. P. (2015). The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: A single-blind, randomized clinical trial. Schizophrenia Bulletin, 41(4), 859–868. https://doi.org/10.1093/schbul/sbv022
13. Kusumawardhani A.A.A.A, Dharmono S, D. H. (2011). Konsensus Penatalaksanaan Gangguan Skizofrenia (Pertama). Perhimpunan Dokter Spesialis Kedokteran Jiwa Indonesia Jakarta: (PDSKJI).
14. Lauritzen, K. H., Morland, C., Puchades, M., Holm-Hansen, S., Hagelin, E. M., Lauritzen, F., ... & Bergersen, L. H. (2014). Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral cortex, 24(10), 27842795.
15. Millar, J. K., Wilson-annan, J. C., Anderson, S., Christie, S., Martin, S., Semple, C. A. M.,
16. Devon, R. S., Clair, D. M. S., Muir, W. J., Blackwood, D. H. R., & Porteous, D. J. (2000).
17. Disruption of two novel genes by a translocation co-segregating with schizophrenia. 9(9), 1415–1424.
18. National Alliance on Mental Illness. (2022). What is Schizophrenia? | NAMI: National Alliance on Mental Illness.
https://www.nami.org/About-Mental-Illness/Mental-HealthConditions/Schizophrenia
19. National Institute of Mental Health. (2022). NIMH » Schizophrenia.
https://www.nimh.nih.gov/health/topics/schizophrenia
20. Nieto, R. R., Carrasco, A., Corral, S., Castillo, R., Gaspar, P. A., Bustamante, M. L., & Silva,
21. H. (2021). BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Frontiers in Psychiatry, 12(June), 1–9.
https://doi.org/10.3389/fpsyt.2021.662407
22. Nieto, R., Kukuljan, M., & Silva, H. (2013). BDNF and schizophrenia: From neurodevelopment to neuronal plasticity, learning, and memory. Frontiers in Psychiatry, 4(JUN), 1–11. https://doi.org/10.3389/fpsyt.2013.00045
23. Nurjono, M., Lee, J., & Chong, S. A. (2012). A review of brain-derived neurotrophic factor as a candidate biomarker in schizophrenia. Clinical Psychopharmacology and Neuroscience, 10(2), 61–70. https://doi.org/10.9758/cpn.2012.10.2.61
24. Owen, M. J., would iams, N. M., & Donovan, M. C. O. (2004). The molecular genetics of schizophrenia : new findings promise new insights. 14–27.
https://doi.org/10.1038/sj.mp.4001444
25. Pellerin, L., Pellegri, G., Bittar, P. G., Charnay, Y., Bouras, C., Martin, J. L., ... & Magistretti, P. J. (1998). Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Developmental neuroscience, 20(4-5), 291-299.
26. Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a Metabolite and a Regulator in the Central Nervous System. International journal of molecular sciences, 17(9), 1450.
27. Rahardjo, S., Herdaetha, A., & Sudiyanto, A. (2008). Uji Validitas Schizophrenia Cognitive Rating Scale versi Indonesia.
28. Rosenbaum, J. F., Arana, G. W., Hyman, S. E., Labbate, L. A., Fava, M., & would iams, M. L. (2007). Handbook of psychiatric drug therapy. J Clin Psychiatry, 68(2).
29. Sinaga, B. R. (2007). Skizofrenia dan Diagnosa Banding. Jakarta : Balai Penerbit, Fakultas Kedokteran Universitas Indonesia, 2007.
30. Stahl, S. M. (2013). Stahl’s Essential Psychopharmacology Neuroscientific Basis and Practical Applications (S. M. Stahl (ed.); Fourth). Cambridge University Press. Stępnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current concepts and treatments of schizophrenia. Molecules, 23(8). https://doi.org/10.3390/molecules23082087
31. Sutrisna, E., & Aisyah, R. (2010). Marker Genetik dan Mekanisme Molekuler Penyakit Skizofrenia. 33–38.
32. Tanra, A. J., Sabaruddin, H., Liaury, K., & Zainuddin, A. A. (2021). Effect of adjuvant vitamin c on brain-derived neurotrophic factor levels and improvement of negative symptoms in schizophrenic patients. Open Access Macedonian Journal of Medical Sciences, 9(T3), 353–357. https://doi.org/10.3889/oamjms.2021.7086
33. Viljoen, M., & Roos, J. L. (2020). Physical exercise and the patient with schizophrenia.
34. Australian Journal of General Practice, 49(12), 803–808.
https://doi.org/10.31128/AJGP-04-20-5384
35. Weaver, S. R., Skinner, B. D., Furlong, R., Lucas, R. A. I., Cable, N. T., Rendeiro, C., McGettrick, H. M., & Lucas, S. J. E. (2021). Cerebral Hemodynamic and Neurotrophic
36. Factor Responses Are Dependent on the Type of Exercise. Frontiers in Physiology, 11(January), 1–14. https://doi.org/10.3389/fphys.2020.609935
37. Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., ... & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID2019. Nature, 581(7809), 465-469.
38. World Health Organization. (2022). Schizophrenia.
https://www.who.int/news-room/factsheets/detail/schizophrenia
39. Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I., & Magistretti, P. J. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proceedings of the National Academy of Sciences, 111(33), 12228-12233.

Most read articles by the same author(s)