Legionella pneumophila Isolated from Cancer Patients and Hospital Environments

Main Article Content

Sanaa Saeed Atia
Asaad M. R. Al-Taee
Yasin Y. Y. AL-Luaibi

Keywords

Antibiotic susceptibility, Cancer center, Legionella pneumophila, MIC

Abstract

A total of 360 samples (Clinical 271 and 89 environmental samples) were collected from the Oncology Center at Al-Sadr hospital in Basrah city southern of Iraq, during January- March, 2020. The clinical specimens included blood, urine and sputum, were taken from patients attending and /or admitting to the center. Meanwhile, the environmental samples were collected from air conditioners, hospital toilets and water.Three hundred isolates of presumptive Legionella sp. were identified using morphological characteristics, biochemical testing and one hundred were subjected for serotyping tests,
The morphological features of L. pneumophila on BCYE agar are all strains produce round, shiny and white colored colonies with a hardly obvious green at 3 days incubation.L. pneumophila also identified using biochemical tests, which include: catalase, oxidase, DNase, gelatin liquefaction, hippurate hydrolysis, urease, biofilm forming (tube and Congo red methods and tissue culture plate method), starch hydrolysis, citrate utilization, hemagglutination activity, protease production and lecithinase and lipase production. The serogroup of Legionella pneumophila was identified using HiLegionella Latex Test Kit. The results showed that 85 isolates were serogroup 1 and 15 isolates were serogroup 2-15. In addition to that nine types of antibiotics were used to determine the susceptibility of 93 isolates to resist them which including azithromycin 15 μg, cefotaxime 30μg, ciprofloxacin 5μg, doxycycline 30 μg, erythromycin 15 μg, levofloxacin 5μg, ofloxacin 10 μg, norfloxacin 10 μg and Rifampicin 5 μg. Furthermore, ten of 23 isolates resistance to antibiotics was subjected to the test of minimum inhibitory concentrations using MIC strips which including azithromycin, cefotaxime, ciprofloxacin and levofloxacin.

Abstract 158 | PDF Downloads 114

References

1. Abdallah, S. N. A., Al-dabbag, R. and Baqir, H. I. (2008b). Nosocomial Bacteremia in Leukopenic Patients with Leukemia in Baghdad Teaching Hospital. The Iraqi Postgraduate Medical Journal 7 (4): 327–31.
2. Al-Matawah, Q. A., Al-Zenki, S. F., Qasem, J. A., Al-Waalan, T. E., & Heji, A. H. B. (2012).Detection and quantification of Legionella pneumophila from water systems in Kuwait residential facilities. Journal of pathogens, 2012.
3. Arslan-Aydoğdu, E. Ö., & Kimiran, A. (2018). An investigation of virulence factors of Legionella pneumophila environmental isolates. brazilian journal of microbiology, 49, 189-199.
4. Arslan-Aydoğdu, E. Ö., & Kimiran, A. (2018). An investigation of virulence factors of Legionella pneumophila environmental isolates. brazilian journal of microbiology, 49, 189-199.
5. Bagheri, H., Khaledi, A., Ghanizadeh, G., & Esmaeili, D. (2021). Efficacy of PCR Analysis of Mip, Doth and Gspd Genes with Culture in Detection of Legionella pneumophila. Iranian Journal of Public Health, 50(5), 1079.
6. Baine WB, Rasheed JK, Mackel DC, Bopp CA, Wells JG, Kaufmann AF. (1979) Exotoxin activity associated with the Legionnaires disease bacterium. J Clin Microbiol. 9:453-456.
7. Baloch, Z. W., Asa, S. L., Barletta, J. A., Ghossein, R. A., Juhlin, C. C., Jung, C. K., ... & Mete, O. (2022). Overview of the 2022 who classification of thyroid neoplasms. Endocrine pathology, 33(1), 27-63.
8. Barzegar, L., Ghanizadeh, G., & Esmaeili, D. (2022). Study of Gorge Fisher Plumbing System Effects on Growth Inhibition and Amplification of Legionella pneumophila by Culture and PCR Based on 16sRNA and mip Genes. Middle East Journal of Rehabilitation and Health Studies, 9(3). 9. Bekele, D. (2022). Review on Cancer and the Immune System. J Clin Immunol Microbiol, 3(2), 1-6.
10. Bhatt, P., Bhandari, G., Bhatt, K., & Simsek, H. (2022). Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. Chemosphere, 306, 135576.
11. Chauhan, D., & Shames, S. R. (2021). Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence, 12(1), 1122-1144.
12. Cocuzza, C. E., Martinelli, M., Perdoni, F., Giubbi, C., Vinetti, M. E. A., Calaresu, E., ... & Musumeci, R. (2021). Antibiotic susceptibility of environmental Legionella pneumophila strains isolated in Northern Italy. International journal of environmental research and public health, 18(17), 9352.
13. Coffey, B. M., & Anderson, G. G. (2014). Biofilm formation in the 96-well microtiter plate. In Pseudomonas Methods and Protocols (pp. 631-641). Humana Press, New York, NY.
14. De Giglio, O., Napoli, C., Lovero, G., Diella, G., Rutigliano, S., Caggiano, G., & Montagna, M. T. (2015). Antibiotic susceptibility of Legionella pneumophila strains isolated from hospital water systems in Southern Italy. Environmental research, 142, 586-590.
15. Ditommaso, S., Giacomuzzi, M., Memoli, G., Garlasco, J., & Zotti, C. M. (2022). The use of BCYE medium for the detection of Legionella in environmental water samples: an appropriate update to ISO 11731: 2017
16. Figueroa, J., Villagrán, D., Cartes, C., Solis, C., Nourdin‐Galindo, G., & Haussmann, D. (2021). Analysis of genes encoding for proteolytic enzymes and cytotoxic proteins as virulence factors of Piscirickettsia salmonis in SHK‐1 cells. Journal of Fish Diseases, 44(5), 495-504.
17. Ghernaout, D., Elboughdiri, N., & Lajimi, R. (2022). E. coli: Health Impacts, Exposure Evaluation, and Hazard Reduction. Open Access Library Journal, 9(6), 1-28.
18. Ghomimaghsad, N., Yaslianifard, S., Mohammadzadeh, M., Dadashi, M., & Noorisepehr, M. (2020). Contamination of water sources of Karaj hospitals with Legionella pneumophila and Campylobacter jejuni. International Journal of Enteric Pathogens, 8(4), 142-146.
19. Heald, R. (2021). The Effect of Doxorubicin on ABC Transporter Gene Expression in Triple Negative Breast Cancer (Doctoral dissertation, Auckland University of Technology).
20. Hussein, N., & Khadum, M. M. (2021). Evaluation of the biosynthesized silver nanoparticles’’effects on biofilm formation. Journal of Applied Sciences and Nanotechnology, 1(1), 23-31.
21. Jabir, D. M. (2022). Evaluation of the ability of some bacterial species isolated from UTI to form biofilm.
22. Jiang, L., Gu, R., Li, X., Song, M., Huang, X., & Mu, D. (2022). Multiple Cross Displacement Amplification Coupled with Lateral Flow Biosensor (MCDA-LFB) for rapid detection of Legionella pneumophila. BMC microbiology, 22(1), 1-10.
23. Kaiser, T. D. L., Pereira, E. M., Dos Santos, K. R. N., Maciel, E. L. N., Schuenck, R. P., & Nunes, A. P. F. (2013). Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagnostic microbiology and infectious disease, 75(3), 235-239.
24. Khaledi, A, Bahrami A, Nabizadeh E, Amini Y, Esmaeili D. (2018). Prevalence of Legionella Species in Water Resources of Iran: A Systematic Review and Meta-Analysis. Iran J Med Sci, 43(6):571–580
25. Lorry G. Rubin, in Principles and Practice of Pediatric Infectious Diseases (Fifth Edition), 2018 .
26. Mahdi Al-Buhilal, J. A., & Mohammed, T. K. (2021). Detection of Legionella pneumophila and Legionella dumoffii Biochemically in WaterSamples in Baghdad City, Iraq. Medico-Legal Update, 21(1).
27. Mousavi, S., Choubdar, M., Panahifard, M., & Fotohi, F. (2022). Survey on Legionella pneumophila in Water Supply Systems of Qazvin Hospitals. Journal of Chemical Health Risks.
28. Mu’azu, L., Ali, M., Ahmad, A. M., Zungum, I. U., & Abdallah, M. S. (2021). isolation, characterization and determination of prevalence rate of methicilin resistance staphylococcus aureus (mrsa) from different types of wound.
29. National Academies of Sciences, Engineering, and Medicine. (2020). Management of Legionella in water systems. National Academies Press.
30. Newton, H. J., Ang, D. K., Van Driel, I. R., & Hartland, E. L. (2010). Molecular pathogenesis of infections caused by Legionella pneumophila. Clinical microbiology reviews, 23(2), 274-298.
31. Niculita-Hirzel, H., Vanhove, A. S., Leclerc, L., Girardot, F., Pourchez, J., & Allegra, S. (2022). Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System. International Journal of Environmental Research and Public Health, 19(6), 3285.
32. Portal, E., Descours, G., Ginevra, C., Mentasti, M., Afshar, B., Chand, M., ... & Jarraud, S. (2021). Legionella antibiotic susceptibility testing: is it time for international standardization and evidence-based guidance?. Journal of Antimicrobial Chemotherapy, 76(5), 1113-1116.
33. Priya, A. K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., & Soto-Moscoso, M. (2022). Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere, 307, 135957.
34. Prommachote, W., Mala, W., Songsri, J., Khoosuilee, J., Wansu, S., Srisara, J., ... & Klangbud, W. K. (2022). Diversity of Colony Morphotypes, Biochemical Characteristics, and Drug Susceptibility Patterns of Burkholderia pseudomallei Isolated from Humans, Animals, and Environmental Sources in Thailand. Trends in Sciences, 19(8), 153-153.
35. Scheithauer, L., Thiem, S., Schmelz, S., Dellmann, A., Büssow, K., Brouwer, R. M., ... & Steinert, M. (2021). Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation. Cellular Microbiology, 23(5), e13313.
36. Sreenath, K., Chaudhry, R., Vinayaraj, E. V., & Thakur, B. (2019). Antibiotic susceptibility of environmental Legionella pneumophila isolated in India. Future Microbiology, 14(8), 661-669.
37. Steinert, M., Hentschel, U., and Hacker, J (2002). Legionella pneumophila: an aquatic microbe goes astray. FEMS. Microbiol. Rev; 26:149–162.
38. Tahaei, S. A. S., Stájer, A., Barrak, I., Ostorházi, E., Szabó, D., & Gajdács, M. (2021). Correlation between biofilm-formation and the antibiotic resistant phenotype in Staphylococcus aureus isolates: a laboratory-based study in Hungary and a review of the literature. Infection and drug resistance, 14, 1155.
39. Talapko, J., Frauenheim, E., Juzbašić, M., Tomas, M., Matić, S., Jukić, M., ... & Škrlec, I. (2022). Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms, 10(2), 255.
40. Tata, A., Marzoli, F., Massaro, A., Passabì, E., Bragolusi, M., Negro, A., ... & Belluco, S. (2022). Assessing direct analysis in real‐time mass spectrometry for the identification and serotyping of Legionella pneumophila. Journal of Applied Microbiology, 132(2), 1479-1488.
41. Yu VL, Plouffe JF, CastellaniPastoris M, Stout JE, Schousboe M, Widmer A, Summersgill J,File T, Heath CM, Paterson DL and Chereshsky A.(2002). Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: aninternational collaborative survey. J Infect Dis 186:127–128.
42. Zonta, Y. R., Dezen, A. L. O., Della Coletta, A. M., Yu, K. S. T., Carvalho, L., Santos, L. A. D., ... & Dias-Melicio, L. A. (2021). Paracoccidioides brasiliensis Releases a DNase-Like Protein That Degrades NETs and Allows for Fungal Escape. Frontiers in cellular and infection microbiology, 10, 592022.