Assessment Of Serum Cathelicidin Level as Potential Roles for Complications in Patients With Β-Tm

Main Article Content

Ayat Saeed Awad
Hanaa Addai Ali
Rawaa Adday Ali
Mohammed Saeed Salman Hasan
Shakir Abdulridha Abbas
Mohauman Mohammed Majeed AL-Rufaie

Keywords

Thalassemia ,Beta-thalassemia major, Cathelicidin

Abstract

Introduction: Thalassemia was a genetic defect outcome via human globin gene production conditions, among the most prevalent genotypes were alpha - and beta-thalassemia.In beta-thalassemia, β-globin chain manufacture is impaired, the amount of hemolysis in β-thalassemia has been observed to directly link with the creation of normal alpha-globin chains. Cathelicidins are cationic peptides with amphipathic characteristics, and they are a group that plays a key part in host defense.
Objectives: To assessment serum Cathelicidin level in patients with β-TM predominantly in splenectomy and non-splenectomy group , also find the correlation among Cathelicidin with other parameters of lipid profile and Iron status.
Design: A case-control study design, including of sixty patients with β-TM found in present study, And there patients don’t have any chronic diseases. The thalassemia disease was registered in the ((thalassemia unit)) in Al-Zahra teaching hospital in Al Najaf city-Iraq , Implicate children or in aldoescence, Their age was range between 7-20 years.A thirty healthy individuals chosen for the control group based on their proximity in terms of age and gender to the patient groups.
Results: The current result shown that significantly diminished in the serum cathelicidin level as comparing amongst splenectomy ,non-splenectomy ,total patients with control group by definition (11.25±2.462) p= 0.045,(11.419±3.093) p=0.048,(11.35±2.75) p=0.047, vs (14.58±1.311) ,respectively. In this study found a significant positive correlation amidst Cathelicidin and body mass index, TIBC , UIBC, transferrin and total cholesterol (T.C) as well as significantly negative correlated with parameters like ferritin ,IRON , transferrin saturation percentage (TS%) ,TG and VLDL.C.
Conclusions: These AMPs can posses a significant part in immune systems as well as the pathogenesis of these patients. Further studies are necessary so as to appreciate the action of LL37 levels in patients with beta thalassemia major.

Abstract 115 | pdf Downloads 106

References

1. Agerberth, B., Charo, J., Werr, J., Olsson, B., Idali, F., Lindbom, L., Kiessling, R., Jörnvall, H., Wigzell, H., & Gudmundsson, G. H. (2000). The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specificlymphocyte and monocyte populations. Blood, The Journal of the American Society of Hematology, 96(9), 3086–3093.
2. Aggeli, C., Antoniades, C., Cosma, C., Chrysohoou, C., Tousoulis, D., Ladis, V., Karageorga, M., Pitsavos, C., & Stefanadis, C. (2005). Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. International Journal of Cardiology, 105(1), 80–84.
3. Akiyama, T., Niyonsaba, F., Kiatsurayanon, C., Ushio, H., Fujimura, T., Ueno, T., Okumura, K., Ogawa, H., & Ikeda, S. (2014). The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function. Journal of Innate Immunity, 6(6), 739–753.
4. Amendola, G., Danise, P., Todisco, N., D’urzo, G., Di Palma, A., & Di Concilio, R. (2007). Lipid profile in β‐thalassemia intermedia patients: correlation with erythroid bone marrow activity. International Journal of Laboratory Hematology, 29(3), 172–176.
5. Badawy, S. M., & Thompson, A. A. (2016). Management of Thalassemias. Nonmalignant Hematology: Expert Clinical Review: Questions and Answers, 39–51.
6. Brissot, P., Troadec, M.-B., Bardou-Jacquet, E., Le Lan, C., Jouanolle, A.-M., Deugnier, Y., & Loreal, O. (2008). Current approach to hemochromatosis. Blood Reviews, 22(4), 195–210.
7. Cao, A., & Galanello, R. (2010). Beta-thalassemia. Genetics in Medicine, 12(2), 61–76.
8. Cappellini, M.-D., Cohen, A., Eleftheriou, A., Piga, A., Porter, J., & Taher, A. (2008). Management of Fertility and Pregnancy in β-thalassemia. In Guidelines for the Clinical Management of Thalassaemia [Internet]. 2nd Revised edition. Thalassaemia International Federation.
9. Cappellini, M. D., Musallam, K. M., Poggiali, E., & Taher, A. T. (2012). Hypercoagulability in non-transfusion-dependent thalassemia. Blood Reviews, 26, S20–S23.
10. Choudhry, V. P. (2017). Thalassemia Minor and Major: Current Management. Indian Journal of Pediatrics, 84(8), 607–611. https://doi.org/10.1007/s12098-017-2325-1
11. Coorens, M., Scheenstra, M. R., Veldhuizen, E. J. A., & Haagsman, H. P. (2017). Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation,
chemokine induction and regulation of phagocytosis. Scientific Reports, 7(1), 1–11.
12. Di Nardo, A., Vitiello, A., & Gallo, R. L. (2003). Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. The Journal of Immunology, 170(5), 2274–2278.
13. Dolai, T. K., Nataraj, K. S., Sinha, N., Mishra, S., Bhattacharya, M., & Ghosh, M. K. (2012). Prevalance of iron deficiency in thalassemia minor: a study from tertiary hospital. Indian Journal of Hematology and Blood Transfusion, 28, 7–9.
14. Galanello, R., & Origa, R. (2010). Beta-thalassemia. Orphanet Journal of Rare Diseases, 5(1), 1–15.
15. Gudmundsson, G. H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., & Salcedo, R. (1996). The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL‐37 in granulocytes. European Journal of Biochemistry, 238(2), 325–332.
16. Hansson, G. C., & Johansson, M. E. V. (2010). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes, 1(1), 51–54.
17. Hartge, M. M., Unger, T., & Kintscher, U. (2007). The endothelium and vascular inflammation in diabetes. Diabetes and Vascular Disease Research, 4(2), 84–88.
18. Hemshekhar, M., Anaparti, V., & Mookherjee, N. (2016). Functions of cationic host defense peptides in immunity. Pharmaceuticals, 9(3), 40.
19. Jensen, C. E., Tuck, S. M., Agnew, J. E., Koneru, S., Morris, R. W., Yardumian, A., Prescott, E., Hoffbrand, A. V, & Wonke, B. (1998). High prevalence of low bone mass in thalassaemia major. British Journal of Haematology, 103(4), 911–915.
20. Kadhim, K. A., Baldawi, K. H., & Lami, F. H. (2017). Prevalence, incidence, trend, and complications of thalassemia in Iraq. Hemoglobin, 41(3), 164–168.
21. Karimi, M., Bagheri, M. H., Tahmtan, M., Shakibafard, A., & Rashid, M. (2009). Prevalence of hepatosplenomegaly in beta thalassemia minor subjects in Iran. European Journal of Radiology, 69(1), 120–122.
22. Kościuczuk, E. M., Lisowski, P., Jarczak, J., Strzałkowska, N., Jóźwik, A., Horbańczuk, J., Krzyżewski, J., Zwierzchowski, L., & Bagnicka, E. (2012). Cathelicidins: family of antimicrobial peptides. A review. Molecular Biology Reports, 39, 10957–10970.
23. Larrick, J. W., Lee, J., Ma, S., Li, X., Francke, U., Wright, S. C., & Balint, R. F. (1996). Structural,functional analysis and localization of the human CAP18 gene. FEBS Letters, 398(1), 74–80.
24. Lindow, J. C., Wunder Jr, E. A., Popper, S. J., Min, J.-N., Mannam, P., Srivastava, A., Yao, Y., Hacker, K. P., Raddassi, K., & Lee, P. J. (2016). Cathelicidin insufficiency in patients with fatal leptospirosis. PLoS Pathogens, 12(11), e1005943.
25. Livrea, M. A., Tesoriere, L., Pintaudi, A. M., Calabrese, A., Maggio, A., Freisleben, H. J., D’arpa, D., D’anna, R., & Bongiorno, A. (1996). Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants.
26. Morris, C. R., & Vichinsky, E. P. (2010). Pulmonary hypertension in thalassemia. Annals of the New York Academy of Sciences, 1202(1), 205–213.
27. Origa, R. (2017). β-Thalassemia. Genetics in Medicine, 19(6), 609–619. https://doi.org/10.1038/gim.2016.173
28. Paganga, G., Rice-Evans, C., Rule, R., & Leake, D. (1992). The interaction between ruptured erythrocytes and low-density lipoproteins. FEBS Letters, 303(2–3), 154–158.
29. Perisano, C., Marzetti, E., Spinelli, M. S., Calla, C. A. M., Graci, C., & Maccauro, G. (2012). Physiopathology of bone modifications in-thalassemia. Anemia, 2012.
30. Peters, M., Heijboer, H., Smiers, F., & Giordano, P. C. (2012). Diagnosis and management of thalassaemia. BMJ, 344.
31. Rund, D., & Rachmilewitz, E. (2005). β-Thalassemia. New England Journal of Medicine, 353(11), 1135–1146.
32. Schauber, J., Svanholm, C., Termen, S., Iffland, K., Menzel, T., Scheppach, W., Melcher, R., Agerberth, B., Lührs, H., & Gudmundsson, G. (2003). Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut, 52(5), 735–741.
33. Scott, M. D., Van Den Berg, J. J., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y., & Lubin, B. H. (1993). Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. The Journal of Clinical Investigation, 91(4), 1706–1712.
34. Shalev, H., Kapelushnik, J., Moser, A., Knobler, H., & Tamary, H. (2007). Hypocholesterolemia in chronic anemias with increased erythropoietic activity. American Journal of Hematology, 82(3), 199–202.
35. Shang, X., & Xu, X. (2017). Update in the genetics of thalassemia: What clinicians need to
know. Best Practice and Research: Clinical Obstetrics and Gynaecology, 39(November), 3–15. https://doi.org/10.1016/j.bpobgyn.2016.10.012
36. Singer, D. B. (1973). Postsplenectomy sepsis. Perspectives in Pediatric Pathology, 1, 285–311.
37. Sunkara, L. T., Achanta, M., Schreiber, N. B., Bommineni, Y. R., Dai, G., Jiang, W., Lamont, S., Lillehoj, H. S., Beker, A., & Teeter, R. G. (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One, 6(11), e27225.
38. Tabei, S. M. B., Mazloom, M., Shahriari, M., Zareifar, S., Azimi, A., Hadaegh, A., & Karimi, M. (2013). Determining and surveying the role of carnitine and folic acid to decrease fatigue in β-thalassemia minor subjects. Pediatric Hematology and Oncology, 30(8), 742–747.
39. Taher, A. L. I., Vichinsky, E., Musallam, K., Cappellini, M. D., Viprakasit, V. I. P., & Weatherall, S. I. R. D. (2013). For the management of non transfusion dependent thalassaemia (ntdt).
40. Taher, A. T., Otrock, Z. K., Uthman, I., & Cappellini, M. D. (2008). Thalassemia and hypercoagulability. Blood Reviews, 22(5), 283–292.
41. Thuret, I., Pondarré, C., Loundou, A., Steschenko, D., Girot, R., Bachir, D., Rose, C., Barlogis, V., Donadieu, J., & de Montalembert, M. (2010). Complications and treatment of patients with β-thalassemia in France: results of the National Registry. Haematologica, 95(5), 724.
42. Toumba, M., & Skordis, N. (2010). Osteoporosis syndrome in thalassaemia major: an overview. Journal of Osteoporosis, 2010.
43. Tselepis, A. D., Hahalis, G., Tellis, C. C., Papavasiliou, E. C., Mylona, P. T., Kourakli, A., & Alexopoulos, D. C. (2010). Plasma levels of lipoprotein-associated phospholipase A2 are increased in patients with β-thalassemia. Journal of Lipid Research, 51(11), 3331–3341.
44. Van Harten, R. M., Van Woudenbergh, E., Van Dijk, A., & Haagsman, H. P. (2018). Cathelicidins: immunomodulatory antimicrobials. Vaccines, 6(3), 63.
45. Vandamme, D., Landuyt, B., Luyten, W., & Schoofs, L. (2012). A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cellular Immunology, 280(1), 22–35.
46. Vigi, V., Volpato, S., Gaburro, D., Conconi, F., Bargellesi, A., & Pontremoli, S. (1969). The correlation between red‐cell survival and excessof α‐globin synthesis in β‐thalassaemia. British Journal of Haematology, 16(1), 25–30.
47. Vogiatzi, M. G., Macklin, E. A., Trachtenberg, F. L., Fung, E. B., Cheung, A. M., Vichinsky, E., Olivieri, N., Kirby, M., Kwiatkowski, J. L., & Cunningham, M. (2009). Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. British Journal of Haematology, 146(5), 546–556.
48. Weatherall, D. J. (2001). Phenotype—genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Reviews Genetics, 2(4), 245–255.
49. Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology, 75(1), 39–48.
50. Zanetti, M. (2005). The role of cathelicidins in the innate host defenses of mammals. Current Issues in Molecular Biology, 7(2), 179–196.
51. Zanetti, M., Gennaro, R., & Romeo, D. (1995). Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Letters, 374(1), 1–5.
52. Zarina, A. L., Norazlin, K. N., Hamidah, A., Aziz, D. A., Zulkifli, S. Z., & Jamal, R. (2010). Spectrum of infections in splenectomised thalassaemia patients. The Medical Journal of Malaysia, 65(4), 283–285.
53. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395.
54. Zhang, H., Xia, X., Han, F., Jiang, Q., Rong, Y., Song, D., & Wang, Y. (2015). Cathelicidin-BF, a novel antimicrobial peptide from Bungarus fasciatus, attenuates disease in a dextran sulfate sodium model of colitis. Molecular Pharmaceutics, 12(5), 1648–1661.