Dertermination of the Parameters Kinetic Growth to the Culture Algal Biomass from Locumba River in Peru for its future use in the Pharmaceutical Industry

Main Article Content

Sheyla Zevallos-Feria
Vilma Dianderas
Lina Quispe
Kattia Martínez
Derly Ortiz
Ygor Sanz
Sheyla Figueroa
Elizabeth Figueroa
Teresa Cano de Terrones

Keywords

Microalgae, foliar fertilizer, liquid biomass, secondary metabolites

Abstract

Microalgae form the basis of the trophic chain of the aquatic environment and they have diverse applications in the pharmaceutical industry. We collect samples of local microalgae from Locumba River, in Tacna, Perú. They were isolated, morphologically described as Ankistrodesmus sp, Tetraselmis striata and Stichococcus sp. Then, they were adapted to the culture technology of the Aquaculture Research Laboratory of IMARPE-Ilo up to 20 L in controlled environment, at 21°C ± 1°C, pH 7.7, 2126 Lux, dissolved oxygen 6.04 mg/L, salinity 35146 PSU, and applying two kinds of nutrient F/2 Guillard and Bayfolan. Specific growth rate (μ), doubling time (tD) and cell density (C.D.) have measured and analysed. The results of one-way ANOVA showed that there was no significant difference (p > 0.05) between the two fertilizers. Bayfolan proved to be more efficient than F/2 Guillard to produce 1000 L of local microalgae to obtain wet biomass that favors the subsequent extraction of secondary metabolites.

Abstract 158 | pdf Downloads 209

References

1. Ali A. 2010. Biological importance of marine algae. Saudi Pharmaceutical Journal. 18, 1–25 pp. doi: 10.1016/j.jsps.2009.12.001.
2. Álvarez M. & T. Gallardo. 1989. A review of algae biotechnology. Bot. Complutenses. Bot. Complutenses. N° 15. 9 – 60 pp.
3. Andersen R. 2005. Algal culturing techniques. Phycological society of América. Elsevier. 589 pp. doi: 10.1111/j.1529-8817.2005.00114.x.
4. Azma M., M. Shamzi, R. Mohamad, R. Abdul & A. Ariff. 2011. Improvement of medium composition for heterotrophic cultivation of Green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal 53. 187–195 pp. doi: 10.1016/j.bej.2010.10.010.
5. Borowitzka M. 1997. Microalgae for Aquaculture: Opportunities and Constraints. Journal of Applied Phycology 9: 393 – 401 pp. doi: 10.1023/A:1007921728300.
6. Brown M. 2002. Nutritional Value and Use of Microalgae in Aquaculture. Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. México. 281 – 292 pp. doi: 10.5772/1516.
7. Brown M., S. Jeffrey, J. Volkman & G Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151. 315-331 pp. doi: 10.1016/S0044-8486(96)01501-3.
8. Burboa M., A. García, L. Gutiérrez, E. Acedo, A. Burgos, M. López & M. Valdés. 2012. Las algas y otros organismos marinos como fuente de Moléculas Bioactivas. Revista de Ciencias Biológicas y de la Salud. Volumen XV, Número 1. Acceso 25/01/17.
9. Butcher R. 1952. Contributions to our knowledge of the smaller marine algae. Journal of the Marine Biological Association of the United Kingdon Vol 31 N°1.175 – 191 pp. doi: 10.1017/S0025315400003751.
10. Cabrita M., Vale & A. Rauter. 2010. Halogenated Compounds From Marine Algae. Marine Drugs.17 pp. doi: 10.3390/md8082301.
11. Camacho F, E. Martínez & S. Sánchez. 1988. Applications of the cultivation of microalgae. Chemical Engineering. 207 – 212 pp. Acceso 23/01/17.
12. Cardozo K., T. Guaratini, M. Barros, V. Falcão, A. Tonon, N. Lopes, S. Moacir. Torres, A. Souza, P. Colepicolo & E. Pinto. 2007. Metabolites from algae with economical impact. ComparativeBiochemistry and Physiology, Part C 146. 60 – 78 pp. doi: 10.1016/j.cbpc.2006.05.007.
13. Cordero J., M. Guevara, E. Morales & C. Lodeiros. 2005. Effect of heavy metals on the growth of tropical microalgae Tetraselmis chuii (Prasinophyceae). Rev. Biol. Trop. Vol. 53 (3-4): 325 – 330 pp. On-line version ISSN 0034-7744. Acceso 26/01/17.
14. Corral L., H. Grisel, J. Montes & E. Polanco. 2000. Aquaculture: Biology, Regulation, Promotion, New Tendencies and Commercial Strategy. Volume I. Crop Development Analysis: Medium, Water and Species. Fundación Alfonso Martín Escudero. Madrid. 246 pp. Acceso 23/01/17.
15. Day J., E. Bensos & F. Fleck. 1999. In vitro Culture and Conservation of Microalgae: Applications for Aquaculture, Biotechnology and Environmental Research. In Vitro Cellular & Developmental Biology. Plant, Vol. 35, No. 2. 127-136 pp. doi: 10.1007/s11627-999-0022-0
16. Debowski M., M. Zieliński, M. Krzemieniewski, M. Dudek & A. Grala. 2012. Microalgae – Cultivation Methods. Polish Journal of Natural Sciences. Pol. J. Natur. Sc., Vol 27(2): 151–164 pp. Acceso 25/01/17.
17. Dooslin M. & S. Krishnakumar. 2013. Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using Gas Chromatography – Mass Spectrometry (GC – MS) analysis. International Journal of Pharmacy and Pharmaceutical Sciences. Vol 5, Issue 3 pp. ISSN: 09751491. Acceso 27/01/17.
18. Fábregas J., J. Abalde, C. Herrero, B. Cabezas & M. Veiga. 1984. Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42(3-4): 207 – 215 pp.Acceso 23/01/17.
19. Faulkner D. 1984. Marine natural products: Metabolites of marine invertebrates. Scripps Institution of Oceanography. doi: 10.1039/a809395d
20. Ferreira S., L. Soares & J. Costa. 2013. Microalgas: uma fonte alternativa na obtencao de acidos gordos essenciais. Revista de Ciencias Agrarias, vol. 36, 275 – 287 pp. ISSN: 0871-018X. Acceso 23/01/17.
21. García D. 2004. Secondary metabolites of plant species. Pastures and Forages. 27(1):1 – 12 pp. ISNN: 08640394. Acceso 23/01/17.
22. Gargano I., G. Olivieria, R. Andreozzia, R. Marottaa, A. Marzocchellaa, G. Pinto & A. Pollio. 2013. Effects of Photobioreactor Depth on Stichococcus Cultures Aimed at Biodiesel Production. Chemical Engineering Transactions. Vol. 32. 6 pp. doi: 10.3303/CET1332187.
23. Greque M., B. Da Silva, E. Greque & J. Vieira. 2015. Biologically Active Metabolites
Synthesized by Microalgae. Biomed Research International. Volume 2015, Article Id 835761, 15 pp. doi: 10.1155/2015/835761.
24. Gonzales A. 2000. Alternatives in the cultivation of microalgae. Polytechnic High School of the Littoral. Degree Thesis.Ecuador. Acceso 23/01/17.
25. Guillard R. 1975. Culture of phytoplankton for feeding marine invertebrates. in "Culture of Marine Invertebrate Animals." (eds: Smith W.L. and Chanley M.H.) Plenum Press, New York, USA. 26 – 60 pp. doi: 10.1007/978-1-4615-8714-9_3.
26. Hayward J. 1974. Studies on the Growth of Stichococcus bacillaris Naegely in Culture. Botany Department, University College, Swansea. doi: 10.1017/S0025315400058525,
27. Iwamoto C., K. Minoura, S. Hagishita, K. Nomoto & A. Numata. 1989. Penostatins F–I, Novel Cytotoxic Metabolites From A Penicillium Species Separated from an Enteromorpha Marine Alga. Soc., Perkin Trans. 449 – 456 pp. doi: 10.1039/a706853k.
28. Latala A. 1991. Effects of salinity, temperature and light on the growth and morphology of Green planktonie algae. Oceanologia, No. 31. 119 – 138 pp. ISBN: 0078-3234. Acceso 24/01/17.
29. Loong C., H. Jamaluddinb, N. Azimah & A. Idrisa, 2014. Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp. Renewable Energy. Volume 68, 1 – 5 pp. doi: 10.1016/j.renene.2014.01.027.
30. MAGRAMA. 2000. (en línea). Aplicaciones de las microalgas: estado de la técnica. Acceso 24/01/17.
31. Neustupa J., M. Elias & L. Šejnohová. 2007. A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84. 1 – 2 pp. doi: 10.1127/0029-5035/2007/0084-0051.
32. Pauw N., J. Morales & G. Persoone. 1984. Mass culture of microalgae in aquaculture systems: Progress and constrains. Laboratory for mariculture, State University of Ghent. 121 – 134 pp. doi: 10.1007/BF00027650.
33. Payyavula R., D. Navarre, J. Kuhl, A. Pantoja, & S. Pillai. 2012. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology. 12(1): 39 – 56 pp.Acceso 23/01/17.
34. Shimizu Y. 1996. Microalgal Metabolites: A New Perspective. Annual Department of Pharmacognosy and Environmental Health Sciences, College of Pharmacy, University of Rhode Island, Kingston. Review of Microbiology. Vol. 50: 431-465 pp. doi: 10.1146/annurev.micro.50.1.431.
35. Tavares S. & A. Pereira. 2008. Large scale laboratory cultures of Ankistrodesmus gracilis(Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergei Korinek, 1981 (Cladocera). Braz. J. Biol., 68(4): 875 – 883 pp. doi: 10.1590/S1519-69842008000400025.
36. Torrentera L. & A. Tacon. 1989. The production of live food and its importance in aquaculture. Field Document No. 12. Government Cooperative Program. FAO – Italia. Acceso 23/01/17.
37. Uribe E. 1992. Cultivation of Microalgae. 5th International Course on Mollusc Cultivation. AGCI-JICA-UCN. Coquimbo. Chile. October 19 – November 13. PP 39 – 81 pp.Shang W. & V. Majidi. 1993. Study of Solute Influences on the Binding of Metals to Stichococcus bacillaris with 113Cd NMR. 1. Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506. doi: 10.1366/0003702934066406
38. Sivakumar G., K. Jeong & J. Lay. 2014. Bioprocessing of Stichococcus bacillaris strain siva2011. Sivakumar et al. Biotechnology for Biofuels 7: 62 pp. doi: 10.1186/1754-6834-7-62
39. Souza P., L. Ferreira, N. Pires, P. Filho, F. Duarte, C. Pereira & M. Mesko. 2012. Algae of economic importance that accumulate cadmium and lead: A review. Brazilian Journal of Pharmacognosy. 22(4): 825-837 pp. Acceso 23/01/17.
40. Valenzuela A. & R. Valenzuela 2014. Omega-3 fatty Acids in nutrition how to contribute? Rev Chil Nutr Vol. 41, Nº2. doi: 10.4067/S0717-75182014000200012.
41. Vonshak A. 1990. Recent advances in microalgal biotechnology. Biotech. Adv. Vol. 8, 709 – 727 pp. doi: 10.1016/0734-9750(90)91993-Q.