Investigation of TNF-α and IL-4 in Pfizer/BioNTech vaccinated people: A comparative study

Main Article Content

Mayyadah Rafeeq
Majid S. Jabir


Covid-19, Pfizer/BioNTech, IL-4, TNF-α


Background: The necessity for a vaccine to prevent this disease has been made abundantly clear by the appearance of the new SARS-CoV-2 and COVID-19. The most reliable method of halting the spread of infectious illnesses is vaccination. Since they were first made available to the general public more than 200 years ago, vaccines have saved millions of lives.
Methods: There were eighty-one (81) participants in total in the study. Individuals ranged in age from 18 to 66 and had recently received COVID-19 mRNA Pfizer/BioNTech [BNT162b2] vaccination injections. They were given two injections of the vaccine of 30 g and 0.3 mL, twenty-one (21) days apart. Before the first vaccination, blood samples were collected. This procedure was repeated on days 7-10 after the first vaccination, and on days 7-10 after the second dose. All samples were tested for IL-4, and TNF-α using a High Sensitivity Human ELISA Kit corresponding to each marker (Elabscience/United State).
Results: There was no significant increase in IL-4 levels in all groups, TNF-α results showed increased after the first and second doses compared to before vaccination, and the increase after the second dose is greater than the first dose.
Conclusions: Our research demonstrated that vaccinations caused Th1 biases and prevented Th2 responses in all groups.

Abstract 255 | pdf Downloads 162


1. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The lancet, 395(10229), 1033-1034.
2. Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., ... & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host & microbe, 27(3), 325-328.
3. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292.
4. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91-98.
5. Fung, T. S., & Liu, D. X. (2019). Human coronavirus: host-pathogen interaction. Annu Rev Microbiol, 73(1), 529-57.
6. Hoehl, S., Rabenau, H., Berger, A., Kortenbusch, M., Cinatl, J., Bojkova, D., ... & Ciesek, S. (2020). Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. New England Journal of Medicine, 382(13), 1278-1280.
7. Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489-493.
8. Shimizu, M. (2019). Clinical features of cytokine storm syndrome. In Cytokine storm syndrome (pp. 31-41). Springer, Cham.
9. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506.
10. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine, 46(5), 846-848.
11. Chen, G., Wu, D. I., Guo, W., Cao, Y., Huang, D., Wang, H., ... & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of clinical investigation, 130(5), 2620-2629.
12. Corum, J., Grady, D., Wee, S. L., & Zimmer, C. (2020). Coronavirus vaccine tracker. The New York Times, 5.
13. Bukhari, M. H., Syed, M., and Zain, S. (2021). The Differences between Traditional Vaccines and RNA Vaccines: Safety, Efficacy, Reliability and Future of COVID-19 Vaccines. Annals of King Edward Medical University, 27(2).
14. Radhi, M. M., Abdullah, H. N., Jabir, M. S., and Al-Mulla, E. A. J. (2017). Electrochemical effect of ascorbic acid on redox current peaks of CoCl2 in blood medium. Nano Biomed. Eng, 9(2), 103-106.
15. Younus, A., Al-Ahmer, S., and Jabir, M. (2019). Evaluation of some immunological markers in children with bacterial meningitis caused by Streptococcus pneumoniae. Research Journal of Biotechnology, 14, 131-133.
16. Jabir, M. S., Sulaiman, G. M., Taqi, Z. J., & Li, D. (2018). Iraqi propolis increases degradation of IL-1β and NLRC4 by autophagy following Pseudomonas aeruginosa infection. Microbes and infection, 20(2), 89-100.
17. Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human vaccines & immunotherapeutics, 16(6), 1232-1238.
18. Wu, C., Chen, X., Cai, Y., Zhou, X., Xu, S., Huang, H., ... & Song, Y. (2020). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine, 180(7), 934-943.
19. Wollenberg, A., Flohr, C., Simon, D., Cork, M. J., Thyssen, J. P., Bieber, T., ... & Vestergaard, C. (2020). European Task Force on Atopic Dermatitis statement on severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection and atopic dermatitis. Journal of the European Academy of Dermatology and Venereology: JEADV, 34(6), e241-e242.
20. Lu, Q., Zhu, Z., Tan, C., Zhou, H., Hu, Y., Shen, G., ... & Xie, X. (2021). Changes of serum IL‐10, IL‐1β, IL‐6, MCP‐1, TNF‐α, IP‐10 and IL‐4 in COVID‐19 patients. International Journal of Clinical Practice, 75(9), e14462.
21. Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martínez-Colón, G. J., McKechnie, J. L., ... & Blish, C. A. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature medicine, 26(7), 1070-1076.
22. Khashan, K. S., Jabir, M. S., & Abdulameer, F. A. (2018). Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent. Materials Research Express, 5(3), 035003.
23. Mortaz, E., Tabarsi, P., Jamaati, H., Dalil Roofchayee, N., Dezfuli, N. K., Hashemian, S. M., ... & Adcock, I. M. (2021). Increased serum levels of soluble TNF-α receptor is associated with ICU mortality in COVID-19 patients. Frontiers in Immunology, 1321.
24. Hu, B., Huang, S., & Yin, L. (2021). The cytokine storm and COVID‐19. Journal of medical virology, 93(1), 250-256.
25. Mulchandani, R., Lyngdoh, T., & Kakkar, A. K. (2021). Deciphering the COVID‐19 cytokine storm: systematic review and meta‐analysis. European journal of clinical investigation, 51(1), e13429.
26. Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., ... & Kanneganti, T. D. (2021). Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1), 149-168.
27. Leung, J. M., Niikura, M., Yang, C. W. T., & Sin, D. D. (2020). Covid-19 and COPD. European Respiratory Journal, 56(2).
28. Yao, Y., Zhou, J., Diao, X., & Wang, S. (2019). Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Therapeutic advances in respiratory disease, 13, 1753466619866096.
29. Lechowicz, K., Drożdżal, S., Machaj, F., Rosik, J., Szostak, B., Zegan-Barańska, M., ... & Kotfis, K. (2020). COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. Journal of clinical medicine, 9(6), 1917.
30. Del Valle, D. M., Kim-Schulze, S., Huang, H. H., Beckmann, N. D., Nirenberg, S., Wang, B., ... & Gnjatic, S. (2020). An inflammatory cytokine signature predicts COVID-19 severity and survival. Nature medicine, 26(10), 1636-1643.