Metabolites Profiling and Biological Activities of Volatile Compounds of Ruellia tuberosa L. Leaves by GC-MS

Main Article Content

Muhamad Farhan


bioactive compounds; GC-MS analysis; medicinal plants; Ruellia Tuberosa L.; phytochemicals


Ruellia Tuberosa L. is a common plant that traditionally has pharmacological potential. The leaves are believed to help accelerate wound healing. However, exploring the biochemical profile in it is still limited. This study aimed to establish phytoconstituent profiles on the leaves of R. Tuberosa L. Therefore, a Gas Chromatography-Mass Spectrometer Analysis (GC-MS) was based. This study revealed 18 polar and non-polar compounds, with five compounds having known biological activity. Squalene dominates in the leaves of R. Tuberosa L., with the highest content of 15.41%, a source of essential anti-oxidants. The study also revealed the presence of new compounds that have not been identified for activity, such as Salvialane, Tridecanoic acid, 12-oxo-, Phenazine, 2-methoxy-, Cyclododecanone, 2-methylene- and others. We conclude that Ruellia Tuberosa L. is an essential herbal candidate that can be used for drug development.

Abstract 394 | PDF Downloads 237


1. Samy MN, Sugimoto S, Matsunami K, Otsuka H, Kamel MS. Chemical Constituents and Biological Activities of Genus Ruellia. Int J Pharmacogn. 2015;2(6):270–9.
2. Wiranto B, Husnin, Susilo. Diversity of terrestrial ferns (Pteridophytes) in Ciliwung Telaga Warna Puncak Bogor tea estate in West Java. J Phys
Conf Ser. 2021;755(1):1–6.
3. Rasdianah Aziz I, Restu Puji Raharjeng A, Susilo, Nasution J. Ethnobotany of traditional wedding: A comparison of plants used by Bugis,
Palembang, Sundanese and Karo ethnic in Indonesia. J Phys Conf Ser. 2019;1175(1).
4. Akbar B, Susilo, Nissa RA, Ritonga RF, Lestari S, Astuti Y, et al. Antifertility Effect of the Ethanol Extract of Centella asiatica L. Urban Against the White Rat (Rattus norvegicus L.) in the Early Post-Implantation. J Phys Conf Ser. 2018;1114(1).
5. Nurmawati D, Sudiarti D, Hasbiyati H. Identification of Medicinal Plant Potential of Kasiyan Village Puger District. Bioeduscience.
6. Risnawati R, Meitiyani, Susilo. The effect of adding Kepok Banana peels (Musa paradisiaca) to powder media on the growth of white oyster
mushrooms (Pleurotus ostreatus). J Phys Conf Ser. 2021;755(1).
7. Ramses, Fenny Agustina, R. Pramuanggit Panggih Nugroho. Antibacterial Potential of Bidara Laut (Ximenia americana) Plant Against Vibrio alginolyticus and V. parahaemolyticus Bacteria. Bioeduscience. 2021;5(1):15–23.
8. Trinh PTN, Giang BL, Tuan NT, Hang HTT, Thuy NT Le, Tuan NN, et al. Alfa Glucosidase Inhibitory, Anti Inflammatory Activities and A New Furanocoumarin Derivative of Ruellia Tuberosa. Nat Prod Res. 2019;0(0):1–8.
9. Alam MA, Subhan N, Awal MA, Alam MS, Sarder M, Nahar L, et al. Antinociceptive and Anti-Inflammatory Properties of Ruellia Tuberosa. Pharm Biol. 2009;47(3):209–14.
10. Hastiana Y, Siroj RA, Irma. Development of Electronic Magazine Teaching Materials for Key Determination and Cladograms in Ethnobotany
and Phytochemical Studies. Bioeduscience. 2021;5(2):131–6.
11. Seerangaraj V, Sathiyavimal S, Shankar SN, Nandagopal JGT, Balashanmugam P, Al-Misned FA, et al. Cytotoxic Effects of Silver Nanoparticles on Ruellia Tuberosa: Photocatalytic Degradation Properties against Crystal Violet and Coomassie Brilliant Blue. J Environ Chem Eng. 2021;9(2):105088.
12. Roosdiana A, Permata FS, Fitriani RI, Umam K, Safitri A. Ruellia Tuberosa L . Extract Improves Histopathology and Lowers Malondialdehyde
Levels and TNF Alpha Expression in the Kidney of Streptozotocin-Induced Diabetic Rats. Vet Med Int. 2020;1–7.
13. Simamora CJK, Rumambi ES, Pratiwi TW, Ningrum AM, Embau TZM. The Opportunity of Spent Bleaching Earth (Bentonite) and Silica
Solubilizing Bacteria as Silica Source for Induction of Secondary Metabolites Production in Plants. Bioeduscience. 2021;5(2):148–53.
14. Suhendi A, Maulana AS. Inhibition Activity of Leaves , Flower and Root Extracts of Ruellia Tuberosa L on α -Glucosidase Enzymes. J Nutraceuticals Herb Med. 2020;3(2):21–8.
15. Safitri A, Fatchiyah F, Sari DRT, Roosdiana A. Phytochemical Screening, in Vitro Anti-Oxidant Activity, and In Silico Anti-Diabetic Activity of
Aqueous Extracts of Ruellia Tuberosa L. J Appl Pharm Sci. 2020;10(03):101–8.
16. Hernawati D, Dwisandi RF, Nuryadin E. Potential of Bioactive Compounds of Arenga Vinegar as Traditional Medicine Through Reverse Docking Techniques. Bioeduscience. 2021;5(2):142–7.
17. Manikandan A, Doss DVA. Evaluation of Biochemical Contents, Nutritional Value, Trace Elements, SDS-PAGE and HPTLC Profiling in the Leaves of Ruellia tuberosa L. and Dipteracanthus patulus (Jacq.) A. J Chem Pharm Res. 2010;2(3):295–303.
18. Nabila N, Susilo S. A Comparative Metabolite Analysis of Pandanus Amaryllifolius Leaves from Different Growth Stages using GC-MS and
Their Biological. Eur Chem Bull. 2022;11(12):22–38.
19. Balachandar R, Karmegam N, Subbaiya R. Extraction, separation and characterization of bioactive compounds produced by streptomyces
isolated from vermicast soil. Res J Pharm Technol. 2018;11(10):4569–74.
20. Özbek O, Saglam B, Usta NC, Budak Y. GC–MS Analysis and Anti–Microbial Activity of Prunella Vulgaris L. Extracts. J Indian Chem Soc. 2022;99(6):100460.
21. Ochola JB, Mutero CM, Marubu RM, Haller BF, Hassanali A, Lwande W. Mosquitoes Larvicidal Activity of Ocimum kilimandscharicum Oil
Formulation under Laboratory and FieldSimulated Conditions. Insects. 2022;13(2):1–15.
22. Jose BE, Selvam PP. Identification of Phytochemical Constituents in the Leaf Extracts of Azima tetracantha Lam using Gas Chromatography-Mass Spectrometry (GC-MS) analysis and Antioxidant Activity. Asian J Res Chem. 2018;11(6):857.
23. Palupi D, Desi Aryani R, Lestari S. Variations in Morphology and Anatomy of Breadfruit (Artocarpus altilis) Based on Differences in
Altitude. Bioeduscience. 2021;5(2):122–30.
24. Priya S, Nethaji S, Sindhuja B. GC-MS analysis of some bioactive constituents of diospyros Virginiana. Res J Pharm Technol. 2014;7(4):429–32.
25. Jeong M, Lee S, Cho S. Effect of Three Defatting Solvents on the Techno-Functional Properties of an Edible Insect (Gryllus bimaculatus) Protein Concentrate. Molecules. 2021;26:1–9.
26. Mokkath JH. Impact of Adsorption of Straight Chain Alcohol Molecules on the Optical Properties of Calcite (10.4) Surface. nanomaterials. 2022;1–11.
27. Shihabudeen PK, Notash MY, Sardroodi JJ, Roy Chaudhuri A. Nitrogen incorporated zinc oxide thin film for efficient ethanol detection. Sensors Actuators B Chem. 2022;358:1–10.
28. Bhavani R, Bhuvaneswari E, Rajeshkumar S. Antibacterial and antioxidant activity of ethanolic extract of ceiba pentandra leaves and its
phytochemicals analysis using GC-MS. Res J Pharm Technol. 2016;9(11):1922–6.
29. Benemir Erkan S, Bugra Coban H, Turhan I. Evaluation of the inhibitory effect of 5-hydroxymethylfurfural (HMF) on ethanol fermentation by using immobilized Saccharomyces cerevisiae in stirred-tank bioreactor and mathematical modeling. Fuel. 2022;317:1–7.
30. He S, Cui Y, Dong R, Chang J, Cai H, Liu H, et al. Global transcriptomic analysis of ethanol tolerance response in Salmonella Enteritidis. Curr
Res Food Sci. 2022;5:798–806.
31. Aravind R, Bindu AR, Bindu K, Alexeyena V. GC-MS analysis of the bark essential oil of cinnamomum malabatrum (burman. f) blume. Res J Pharm Technol. 2014;7(7):754–9.
32. Chan CA, Ho LY, Sit NW. Larvicidal Activity and Phytochemical Profiling of Sweet Basil (Ocimum basilicum L .) Leaf Extract against Asian Tiger Mosquito ( Aedes albopictus ). Horticulture. 2022;8:1–14.
33. Hossain MA, Al-toubi WAS, Weli AM, Alriyami QA, Al-sabahi JN. Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem. J Taibah Univ Sci. 2018;7(4):181–8.
34. Lawal B, Sani S, Onikanni AS, Ibrahim YO, R. Agboola A, Lukman HY, et al. Biomedicine & Pharmacotherapy Preclinical anti-inflammatory
and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats , and pharmacoinformatics of it major phytoconstituents. Biomed Pharmacother. 2022;152:1–15.
35. Huang Z, Lin Y, Fang J. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. molecules. 2009;10:540–54.
36. Shin DH, Heo HJ, Lee YJ, Kim HK. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. Br J off Biomed Sci.
37. Ketenoglu O, Ozkan KS, Yorulmaz A, Tekin A. Molecular distillation of olive pomace oil ─ Multiobjective optimization for tocopherol and
squalene. LWT - Food Sci Technol. 2018;91:198–202.
38. Fata G La, Weber P, Mohajeri MH. Effects of Vitamin E on Cognitive Performance during Ageing and in Alzheimer’s Disease. Nutrients.
39. Richard EL, Laughlin GA, Kritz-silverstein D, Reas ET, Barrett-connor E, Mcevoy LK. Dietary Patterns and Cognitive Function among Older
Community-Dwelling Adults. Nutrients. 2018;(10):1–15.
40. Barros S, Ribeiro APD, Steven O, Loewy ZG. Anti-Inflammatory E ff ects of Vitamin E in Response to Candida albicans. microorganisms.
41. Campoccia D, Visai L, Reno F, Cangini I, Rizzi M, Poggi A, et al. Bacterial adhesion to poly- ( D , L ) lactic acid blended with vitamin E : Toward
gentle anti-infective biomaterials. Soc Biomater. 2014;1447–58.
42. Avarro A, Heras BD Las, Villar A. AntiInflammatory and Immunomodulating Properties of a Sterol Fraction from Sideritis foetens C LEM
. Biol Pharm Bull. 2001;24(5):470–3.
43. Afroz M, Zihad SMNK, Uddin SJ, Rouf R, Rahman MS, Islam MT, et al. A systematic review on antioxidant and antiinflammatory activity of Sesame ( Sesamum indicum L .) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phyther Res. 2019;(June):1–24.
44. Wang J, Huang M, Yang J, Ma X, Zheng S, Deng S, et al. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr Res. 2017;61(1).
45. Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase β: Activity and mechanism. Bioorganic Med Chem. 2008;16(8):4331–40.
46. Wijayanti DR, Dewi AP. Extraction and Identification Potent Antibacterial Bioactive Compound of Streptomyces sp. MB 106 from Euphorbia sp. Rhizosphere. Bioeduscience. 2022;6(1):84–8.
47. Fernando IPS, Sanjeewa KKA, Ann Y, Ko C, Lee S, Lee WW, et al. Apoptotic and antiproliferative effects of Stigmast-5-en-3-ol from Dendronephthya gigantea on human leukemia HL-60 and human breast cancer MCF-7 cells. Toxicol Vitr. 2018;52:297–305.
48. Iyer D, Patil UK. Efficacy of Stigmast-5-en-3 β -ol Isolated from Salvadora persica L . as Antihyperlipidemic and Anti-tumor agent : Evidence from animal studies. Asian Pacific J Trop Dis. 2012;2:S849–55.
49. Khan MA, Khan MJ. Nano-gold displayed antiinflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif Cells, Nanomedicine, Biotechnol. 2018;46(S1):S1149–58.
50. Susilo, Setyaningsih M. Analysis of genetic diversity and genome relationships of four eggplant species (Solanum melongena L) using
RAPD markers. J Phys Conf Ser. 2018;948(1):0–6.
51. Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods : structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res. 2002;41:457–500.
52. Prasad M, Jayaraman S, Eladl MA, El-Sherbiny M, Abdelrahman MAE, Veeraraghavan VP, et al. A Comprehensive Review on Therapeutic
Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules. 2022;27(5):1–17.
53. Antwi AO, Obiri DD, Osafo N. Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators Inflamm. 2017;2017:1–12.
54. Tominaga M, Miyazaki K, Hataya S, Mitsui Y, Kuroda S, Kondo A, et al. Enhanced squalene production by modulation of pathways consuming squalene and its precursor. J Biosci Bioeng. 2022;134(1):1–6.
55. Pandian RS, Noora AT. GC-MS analysis of phytochemical compounds present in the leaves of Citrus medica. L. Res J Pharm Technol. 2019;12(4):1823–6.
56. Krishnaveni M, Krishna Kumari G, Ragina Banu C, Kalaivani M. Phytochemical analysis of Terminalia catappa stem using GC-MS/MS. Res
J Pharm Technol. 2015;8(9):1281–3.
57. Vanoye L, Guicheret B, Rivera-Cárcamo C, Castro Contreras R, de Bellefon C, Meille V, et al. Process intensification of the catalytic hydrogenation of squalene using a Pd/CNT catalyst combining nanoparticles and single atoms in a continuous flow reactor. Chem Eng J. 2022;441(March).
58. Hu Y, Suo J, Jiang G, Shen J, Cheng H, Lou H, et al. The effect of ethylene on squalene and βsitosterol biosynthesis and its key gene network analysis in Torreya grandis nuts during postripening process. Food Chem. 2022;368(May 2021):130819.
59. Cowan EA, Tran H, Gray N, Perez JJ, Watson C, Blount BC, et al. A gas chromatography-mass spectrometry method for quantifying squalane
and squalene in aerosol emissions of electronic cigarette, or vaping, products. Talanta. 2022;238(P1):122985.
60. Azmi L, Gupta SS, Shukla I, Kant P, Sidhu OP, Rao C V. Effect of squalene in surgically induced gastro-oesophageal reflux disease on rats. Res J Pharmacol Pharmacodyn. 2017;9(1):1.
61. Lozano-grande MA, Gorinstein S, Espitia-rangel E, Davila-Ortiz G, Martinez-Ayala AL. Plant Sources , Extraction Methods , and Uses of
Squalene. Int J Agron. 2018;1–14.
62. Zahi MR, Liang H, Khan A, Yuan Q. Identification of Essential Oil Components in Chinese Endemic Plant Achnatherum inebrians.
Asian J Res Chem. 2014;7(6):576–9.
63. Gamna F, Cochis A, Scalia AC, Vitale A, Ferraris S, Rimondini L, et al. The use of vitamin E as an anti-adhesive coating for cells and bacteria for temporary bone implants. Surf Coat Technol. 2022;444:128694.
64. Lu Y, Liang XP, Jin M, Sun P, Ma HN, Yuan Y, et al. Effects of dietary vitamin E on the growth performance, antioxidant status and innate
immune response in juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture. 2016;464:609–17.
65. Wu F, Jiang M, Wen H, Liu W, Tian J, Yang C geng, et al. Dietary vitamin E effects on growth, fillet textural parameters, and antioxidant
capacity of genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Aquac Int. 2017;25(2):991–1003.
66. Li S, Lian X, Chen N, Wang M, Sang C. Effects of dietary vitamin E level on growth performance, feed utilization, antioxidant capacity and
nonspecific immunity of largemouth bass, Micropterus salmoides. Aquac Nutr. 2018;24(6):1679–88.
67. Saheli M, Rajabi Islami H, Mohseni M, Soltani M. Effects of dietary vitamin E on growth performance, body composition, antioxidant
capacity, and some immune responses in Caspian trout (Salmo caspius). Aquac Reports. 2021;21:100857.