Development of the properties of zinc polycarboxylate cement used as a basis for dental fillings using Alumina nanoparticles

Main Article Content

Noor Jabbar
Entisar Alabodi

Keywords

Zinc oxide polycarboxylate cement ZPCC , Aluminum Oxid nanoparticles , Green chemistry , Al2O3-ZPCC, G-Al2O3-ZPCC, E.coli , S. aureus , C. albicans.

Abstract

Almost of dental materials do not appear a good seal from microorgansims entre. Thus, a microscopic space is may be exist at the interface between the packing material and the walls of the root end cavity, that is allowing microorganisms and their products to penetrate, and also to a perfect sealing capacity with biocompatibility, root fillers should ideally contain an antimicrobial efficacy. Therefore, this is study targeted to estimate the antimicrobial activity of zinc oxide polycarboxylate cement (ZPCC) and its composites with aluminum oxide nanoparticles, Al2O3-ZPCC, & Green-Al2O3-ZPCC. The antimicrobial properties of ZPCC and its composites spread technology were tested against for E. coli, S. aureus, as well as Candida albicans. Based on the antimicrobial activity results, the  addition of aluminium oxide nanoparticles
to ZPCC improved its antimicrobial activity.

Abstract 219 | pdf Downloads 161

References

1. Milutinović-Nikolić DA, Medić VB, Vuković ZM. “Dent. Mater”. 2007;23: 674.
2. Wilson AD, Nicholson JW. “Acid-Base Cements”. Cambridge: The University Press; 1993.
3. Schmalz, Gottfried and Arenholt-Bindslev, Dorthe, “Biocompatibility of Dental Materials”. Chp.6, Springer-Verlag, Berlin, Germany, 2009.
4. . Saad B. H. Farid(2014), Redesign of Zinc Polycarboxylate Dental Cement , IHJPAS Vol. 27 (2) 2014.
5. Abadi A.H.& E. E. Al-Abodi "A Review Article: Green Synthesis by using Different Plants to preparation Oxide Nanoparticles", IHJPAS.36(1)2023.
6. Gebre SH, Sendeku MG. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Applied
Sciences. 2019;1(8).
7. A. Farouk, I. Latifand and E. E. Al- Abodi, (2016) "Preparation and Characterization of Silver Nanoparticles and Study Their effect on the Electrical Conductivity of the Polymer Blend(Poly vinyle acitet. Pectin ,poly Aniline)", IHJPAS Vol. 29 (3).
8. Alsaady L. J.k. and T. M. Al-Saadi, (2015) "Preparation of Silver Nanoparticles by Sol - Gel Method and Study their Characteristics", IHJPAS Vol. 28 (1).
9. AL-Rubaye H. I. 1, B. k. AL-Rubaye1, E. E. Al-Abodi1a, E. I. Yousif " Green Chemistry Synthesis of Modified Silver Nanoparticles" Journal of Physics: Conference Series1664 (2020). 012080IOPPublishingdoi:10.1088/1742- 6596/1664/1/012080.
10. Entisar E. Al-Abodi, Tagreed M. Al-Saadi, Alaa F . Sulaiman and IssamJ.AlKhilfhawi "Bio Synthesis of Silver Nanoparticles by Using Garlic Plant Iraqi
Extract and Study Antibacterial Activity",3rd Woman Scientific Conference of woman science collage-Bghdad University 7-8 December 2016.
11. R.M.Kadhim, , E. E. Al-Abodi, and A. F. Al-Alawy" Citrate-coated magnetite nanoparticles as osmotic agent in a forward osmosis process" Desalination and Water Treatment,115 (2018) 45–52 May
12. Meder F, Kaur S, Treccani L, Rezwan K. Controlling Mixed-Protein Adsorption Layers on Colloidal Alumina Particles by Tailoring Carboxyl and Hydroxyl Surface Group Densities. Langmuir. 2013;29(40):12502-10.
13. Ke X, Huang Y, Dargaville TR, Fan Y, Cui
Z, Zhu H. Modified alumina nanofiber
membranes for protein separation.
Separation and Purification Technology.
2013;120:239-44.
14. Liu X, Luo L, Ding Y, Xu Y. Amperometric biosensors based on aluminananoparticleschitosan-horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. The Analyst. 2011;136(4):696-701.
15. Lin W, Stayton I, Huang Y-w, Zhou X-D, Ma Y. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicological & Environmental Chemistry. 2008;90(5):983-96.
16. Hakuta Y, Nagai N, Suzuki YH, Kodaira T, Bando KK, Takashima H, et al. Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions. IOP Conference Series: Materials Science and Engineering. 2013;47:012045.
17. Prashanth PA, Raveendra RS, Hari Krishna R, Ananda S, Bhagya NP, Nagabhushana BM, et al. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. Journal of Asian Ceramic Societies. 2015;3(3):345-51.
18. Al-Mamun SA, Nakajima R, Ishigaki T. Tuning the size of aluminum oxide nanoparticles synthesized by laser ablation in water using physical and chemical approaches. Journal of Colloid and Interface Science. 2013;392:172-82.
19. Banerjee S, Gautam RK, Jaiswal A, Chandra Chattopadhyaya M, Chandra Sharma Y. Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles. RSC Advances. 2015;5(19):14425-40.
20. Hardy CG, Ren L, Ma S, Tang C. Self-assembly of welled fined ferro cenetri block copolymers and their template synthesis of ordered iron
oxide nanoparticles. Chem Commun. 2013;49(39):4373-5.
21. Gao H, Li Z, Zhao P. Green synthesis of nanocrystalline α-Al2O3 powders by both wetchemical and mechanochemical methods. Modern Physics Letters B. 2018;32(08):1850109.
22. Chu T, Nguyen N, Vu T, Dao T, Dinh L, Nguyen H, et al. Synthesis, Characterization, and Modification of Alumina Nanoparticles for Cationic Dye Removal. Materials. 2019;12(3):450.
23. Rajaeiyan A, Bagheri-Mohagheghi MM. Comparison of Urea and Citric Acid Complexing Agents and Annealing Temperature Effect on the Structural Properties of - and - Alumina Nanoparticles Synthesized by Sol-Gel Method. Advances in Materials Science and Engineering. 2013;2013:1-9.
24. Reid CB, Forrester JS, Goodshaw HJ, Kisi EH, Suaning GJ. A study in the mechanical milling of alumina powder. Ceramics International. 2008;34(6):1551-6.
25. Sutradhar P, Debnath N, Saha M. Microwaveassisted rapid synthesis of alumina nanoparticles using tea, coffee and triphala extracts. Advances
in Manufacturing. 2013;1(4):357-61.
26. Zaki T, Kabel KI, Hassan H. Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area. Ceramics International. 2012;38(6):4861-6.
27. Martín MI, Gómez LS, Milosevic O, Rabanal ME. Nanostructured alumina particles synthesized by the Spray Pyrolysis method: microstructural and morphological analyses. Ceramics International. 2010;36(2):767-72.
28. S. Ghotekar / Plant extract mediated biosynthesis of Al2O3 nanoparticles- a review on plant parts involved, characterization and applications,,
Nanochem Res 4(2): 163-169, Summer and Autumn 2019
29. Mohamad, Siti Nur Syakirah, Norsuria Mahmed, Dewi Suriyani Che Halin, Kamrosni Abdul Razak, Mohd Natashah Norizan, and Ili Salwani Mohamad. "Synthesis of alumina nanoparticles by sol-gel method and their applications in the removal of copper ions (Cu2+) from the solution." In IOP Conference Series: Materials Science nd Engineering, vol. 701, no. 1, p. 012034. IOP Publishing, 2019.
30. Batool Sarhan Mansour, 2014, Synthesis and Dispersing of Different Nanoparticles(Fe2O3 and Al2O3) in Paraffin and Use Them as an Enhancing Adsorption Materials, Master Thesis, College of Education for Pure Science / University of Diyala.
31. EMAD, Aneer; AL-ABODI, Entisar E. AntiInflammation Effects of Silver NanoparticlesZinc Polycarboxylate Cement (AGNPSZPCCEM). Pakistan Journal of Medical & Health Sciences, 2022, 16.04: 943-943.
32. Himedia company , india
33. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588– 599
34. Hocine R, Mazauric J, Madani K, BoulekbacheMakhlouf L (2016) Phytochemical analysis and antioxidant activity of Eucalyptus globulus: a comparative study between fruits and leaves extracts. J Chem Eng Bio Chem 1:23–29 37. Ovais M, Khalil AT, Raza A, Khan MA, Ahma.
35. Ruqayah Ali Salman (2018) Histopathological Effect of Zinc Oxide Nanoparticles on Kkidney and Liver Tissues in Albino Male Mice. Ibn AlHaitham Jour. for Pure & Appl. Sci. Vol. 13 (3).
36. Ishnava KB, Chauhan JB, Barad MB (2013) Anticariogenic and phytochemical evaluation of Eucalyptus globules Labill. Saudi J Biol Sci 20:69–74
37. Parveen A, Roy AS, Rao S (2012) Biosynthesis and characterization of silver nanoparticles from Cassia auriculata leaf extract and in vitro evaluation of antimicrobial activity. Int J Appl Biol Pharm 3:222–228.
38. Kim JP, Lee IK, Yun BS, Chung SH, Shim GS, Koshino H, Yoo ID (2001) Ellagic acid rhamnosides from the stem bark of Eucalyptus globulus. Phytochemistry 57:587–591.
39. Greish YE, Hamdan NM, El Maghraby HF. 2012. Formation and preliminary in vitro evaluation of a zincpolycarboxylate cement reinforced with neat and acid-treated wollastonite fibers. J Biomed Mater Res Part B
2012:100B:1059–1067.
40. Siqueira JF, Jr., Favieri A, Gahyva SM, Moraes SR, Lima KC, Lopes HP. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod. 2000;26(5):274-7.
41. Tobias RS. Antibacterial properties of dental restorative materials: a review. Int Endod J. 1988;21(2):155-60.
42. Fraga RC, Siqueira JF, Jr., de Uzeda M. In vitro evaluation of antibacterial effects of photo-cured glass ionomer liners and dentin bonding agents
during setting. J Prosthet Dent.. 1996;76(5):483- 6.
43. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(1):86- 93.
44. Siren EK, Haapasalo MP, Ranta K, Salmi P, Kerosuo EN. Microbiological findings and clinical treatment procedures in endodontic cases selected for microbiological investigation. Int Endod J. 1997;30(2):91-5.
45. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J. 1998;31(1):1-7.
46. Adl A, Shojaee NS, Motamedifar M. A Comparison between the Antimicrobial Effects of Triple Antibiotic Paste and Calcium Hydroxide Against Entrococcus Faecalis. Iran Endod J. 2012;7(3):149-55.
47. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Antibacterial effects of some root end filling materials. J Endod. 1995;21(8):403-6.
48. McHugh CP, Zhang P, Michalek S, Eleazer PD. pH required to kill Enterococcus faecalis in vitro. J Endod. 2004;30(4):218-9.
49. Al-Hezaimi K, Al-Hamdan K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Effect of white-colored mineral trioxide aggregate in different concentrations on Candida albicans in vitro. J Endod. 2005;31(9):684-6.
50. Choi O, Deng KK, Kim NJ, Ross L, Jr., Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42(12):3066-74.
51. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42(12):4583-8.
52. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103-10.
53. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5(2):244-9.
54. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J