A Prospective Observational Study of Blood Loss in Paediatric Scoliosis Surgery

Main Article Content

Dr. B. Kavya
Dr. Varaprasad KG
Dr. E. Naresh Kumar
Dr. K. Deepak

Keywords

...................

Abstract

Paediatric scoliosis surgery is frequently associated with significant intraoperative blood loss, leading to increased transfusion requirements and potential perioperative complications. Understanding the magnitude, predictors, and management of blood loss remains crucial to improving outcomes and optimizing blood conservation strategies.


Objective: To evaluate the amount of blood loss in Paediatric scoliosis surgery and identify factors influencing transfusion requirements.


Methods: This prospective observational study included 32 Paediatric patients undergoing corrective scoliosis surgery from October 2023 to September 2025. Intraoperative blood loss, transfusion parameters, use of antifibrinolytics, and perioperative haemoglobin changes were analyzed.


Results: Mean estimated blood loss (EBL) was 980 ± 320 mL. 21 patients (65.6%) required blood transfusion. Use of tranexamic acid significantly reduced average blood loss (p < 0.05). Neuromuscular scoliosis and longer operative duration were associated with higher blood loss.


Conclusion: Blood loss during Paediatric scoliosis surgery remains substantial but can be effectively reduced with standardized blood management protocols and antifibrinolytic use.

Abstract 0 | PDF Downloads 0

References

1. Kim HJ, Park HS, Jang MJ, Koh WU, Song JG, Lee CS, et al. Predicting massive transfusion in adolescent idiopathic scoliosis patients undergoing corrective surgery. Medicine (Baltimore). 2018;97:e10972.
2. Hassan N, Halanski M, Wincek J, Reischman D, Sanfilippo D, Rajasekaran S, et al. Blood management in Paediatric spinal deformity surgery: review of a 2-year experience. Transfusion. 2011;51:2133–2141.
3. Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion for Paediatric patients with idiopathic scoliosis in the United States, 2004–2009. Spine. 2014;39:1860–1867.
4. Yoshihara H, Yoneoka D. National trends in spinal fusion for Paediatric patients with idiopathic scoliosis: demographics, blood transfusions, and in-hospital outcomes. Spine. 2014;39:1144–1150.
5. Willner D, Spennati V, Stohl S, Tosti G, Aloisio S, Bilotta F. Spine surgery and blood loss: systematic review of clinical evidence. Anesth Analg. 2016;123:1307–1315.
6. Jia R, Li N, Xu B, Zhang W, Gu X, Ma Z. Incidence, influencing factors, and prognostic impact of intraoperative massive blood loss in adolescents with neuromuscular scoliosis. Medicine (Baltimore). 2017;96:e6292.
7. Baker CE, Marvi T, Austin TM, Payne S, Mignemi ME, Gailani D, et al. Dilutional coagulopathy in Paediatric scoliosis surgery: a single center report. Paediatr Anaesth. 2018;28:974–981.
8. Drucker NA, Wang SK, Newton C. Paediatric trauma-related coagulopathy: balanced resuscitation, goal-directed therapy and viscoelastic assays. Semin Pediatr Surg. 2019;28:61–66.
9. Leeper CM, Neal MD, McKenna CJ, Gaines BA. Fibrinolysis shutdown in the days after injury is associated with poor outcome in severely injured children. Ann Surg. 2017;266:508–515.
10. Yuan L, Zeng Y, Chen ZQ, Zhang XL, Mai S, Song P, et al. Efficacy and safety of antifibrinolytic agents in spinal surgery: a network meta-analysis. Chin Med J (Engl). 2019;132:577–588.
11. Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CAA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30:270–382.
12. Pabinger I, Fries D, Schöchl H, Streif W, Toller W. Tranexamic acid for treatment and prophylaxis of bleeding and hyperfibrinolysis. Wien Klin Wochenschr. 2017;129:303–316.
13. Goobie SM, Zurakowski D, Glotzbecker MP, McCann ME, Hedequist D, Brustowicz RM, et al. Tranexamic acid is efficacious at decreasing the rate of blood loss in adolescent scoliosis surgery: a randomized placebo-controlled trial. J Bone Joint Surg Am. 2018;100:2024–2032.
14. Faraoni D, Goobie SM. The efficacy of antifibrinolytic drugs in children undergoing noncardiac surgery: a systematic review. Anesth Analg. 2014;118:628–636.
15. Goobie SM, Meier PM, Pereira LM, McGowan FX, Prescilla RP, Scharp LA, et al. Efficacy of tranexamic acid in Paediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology. 2011;114:862–871.
16. Gausden EB, Brusalis CM, Qudsi RA, Swarup I, Fu M, Dodwell E, et al. Efficacy of antifibrinolytics in Paediatric orthopedic surgery: a systematic review and meta-analysis. J Pediatr Orthop B. 2020;29:97–104.
17. Goobie SM, Faraoni D. Tranexamic acid and perioperative bleeding in children: what do we still need to know? Curr Opin Anaesthesiol. 2019;32:343–352.
18. Johnson DJ, Johnson CC, Goobie SM, Nami N, Wetzler JA, Sponseller PD, et al. High-dose versus low-dose tranexamic acid to reduce transfusion requirements in Paediatric scoliosis surgery. J Pediatr Orthop. 2017;37:e552–e557.
19. Shrestha IK, Ruan TY, Lin L, Tan M, Na XQ, Qu QC, et al. The efficacy and safety of high-dose tranexamic acid in adolescent idiopathic scoliosis: a meta-analysis. J Orthop Surg Res. 2021;16:53.
20. Stricker PA, Gastonguay MR, Singh D, Fiadjoe JE, Sussman EM, Pruitt EY, et al. Population pharmacokinetics of ε-aminocaproic acid in adolescents undergoing posterior spinal fusion surgery. Br J Anaesth. 2015;114:689–699.
21. Kannan S, Meert KL, Mooney JF, Hillman-Wiseman C, Warrier I. Bleeding and coagulation changes during spinal fusion surgery: comparison of neuromuscular and idiopathic scoliosis patients. Pediatr Crit Care Med. 2002;3:364–369.
22. Jaramillo S, Montane-Muntane M, Gambus PL, Capitan D, Navarro-Ripoll R, Blasi A. Perioperative blood loss: estimation of blood volume loss or haemoglobin mass loss? Blood Transfus. 2020;18:20–29.
23. Jaramillo S, Montane-Muntane M, Capitan D, Aguilar F, Vilaseca A, Blasi A, et al. Agreement of surgical blood loss estimation methods. Transfusion. 2019;59:508–515.
24. Minhas SV, Chow I, Bosco J, Otsuka NY. Assessing the rates, predictors, and complications of blood transfusion volume in posterior arthrodesis for adolescent idiopathic scoliosis. Spine. 2015;40:1422–1430.
25. Sharma V, Katznelson R, Jerath A, Garrido-Olivares L, Carroll J, Rao V, et al. Association between tranexamic acid and convulsive seizures after cardiac surgery. Anaesthesia. 2014;69:124–130.
26. Martin K, Breuer T, Gertler R, Hapfelmeier A, Schreiber C, Lange R, et al. Tranexamic acid versus ε-aminocaproic acid in Paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011;39:892–897.
27. Shapiro F, Sethna N. Blood loss in Paediatric spine surgery. Eur Spine J. 2004;13(Suppl 1):S6–S17.
28. Meert KL, Kannan S, Mooney JF. Predictors of red cell transfusion in children and adolescents undergoing spinal fusion surgery. Spine. 2002;27:2137–2142.
29. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93:82–87.
30. Lavoie J. Blood transfusion risks and alternative strategies in Paediatric patients. Paediatr Anaesth. 2011;21:14–24.
31. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J, et al. Relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2014;96:e80.
32. Halanski MA, Cassidy JA, Hetzel S, Reischmann D, Hassan N. Efficacy of amicar versus tranexamic acid in Paediatric spinal deformity surgery. Spine Deform. 2014;2:191–197.
33. Stutz CM, O’Rear LD, O’Neill KR, Tamborski ME, Crosby CG, Devin CJ, et al. Coagulopathies in orthopaedics. J Orthop Trauma. 2013;27:236–241.
34. Lecker I, Wang D, Whissell PD, Avramescu S, Mazer CD, Orser BA. Tranexamic acid–associated seizures. Ann Neurol. 2016;79:18–26.
35. Miszta A, Huskens D, Donkervoort D, Roberts MJM, Wolberg AS, de Laat B. Assessing plasmin generation in health and disease. Int J Mol Sci. 2021;22:2758.
36. Goobie SM, Cladis FP, Glover CD, Huang H, Reddy SK, Fernandez AM, et al. Safety of antifibrinolytics in cranial vault reconstructive surgery. Pediatr Anesth. 2017;27:271–281.
37. Kramer M, Drexler M, Herman A, Kalimian T, Klassov Y, Nasser LA. Use of intraoperative tranexamic acid and wound complications in spine surgery. Asian Spine J. 2020;14:639–646.
38. Brenn BR, Theroux MC, Dabney KW, Miller F. Clotting parameters and thromboelastography in children with neuromuscular and idiopathic scoliosis undergoing posterior spinal fusion. Spine. 2004;29:E310–E314.
39. Caubet JF, Emans JB, Smith JT, van Bosse HJP, Ramirez N, Flynn J, et al. Increased haemoglobin levels in patients with early onset scoliosis. Spine. 2009;34:2534–2536.
40. Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion for Paediatric patients. Spine. 2014;39:1860–1867.
41. Yoshihara H, Yoneoka D. National trends in spinal fusion for Paediatric patients. Spine. 2014;39:1144–1150.
42. Hassan N, Halanski M, Wincek J, Reischman D, Sanfilippo D, Rajasekaran S, et al. Blood management in Paediatric spinal deformity surgery. Transfusion. 2011;51:2133–2141.
43. Stutz CM, O’Rear LD, O’Neill KR, Tamborski ME, Crosby CG, Devin CJ, et al. Coagulopathies in orthopaedics: links to inflammation and individualized treatment strategies. J Orthop Trauma. 2013;27:236–241.
44. Caubet JF, Emans JB, Smith JT, Van Bosse HJP, Ramirez N, Flynn JM, et al. Increased haemoglobin levels in patients with early onset scoliosis treated with VEPTR. Spine. 2009;34:2534–2536.