LEVERAGING AI AND CRISPR IN BIOTECHNOLOGY TO COMBAT HPV-INDUCED CERVICAL CANCER: CURRENT ADVANCES AND FUTURE PERSPECTIVES

Main Article Content

Adhish Mishra
Vivek Gupta

Keywords

......................

Abstract

This review explores the synergistic integration of artificial intelligence (AI) and CRISPR-Cas9 technologies in biotechnology to address human papillomavirus (HPV)-induced cervical cancer, a major global health challenge. By targeting HPV oncogenes i.e. E6 and E7, CRISPR offers a precision oncology approach to restore tumour suppressor functions, while AI enhances the design and optimization of these therapies. We synthesize recent advancements, including clinical trials, AI-driven guide RNA design, and biotechnological applications, while addressing challenges like off-target effects and ethical concerns. This review highlights the transformative potential of these technologies in virology and oncology, with a focus on future directions for personalized cancer treatments.

Abstract 0 | PDF Downloads 0

References

1. The Lancet Global Health, Volume 8, Issue 2, e180 - e190
2. Bhatla, N., et al. (2021). Revised FIGO staging for carcinoma of the cervix: 2019 perspectives. Int J Gynecol Obstet, 145(1), 129–135. https://doi.org/10.1002/ijgo.13300
3. Chung, S. H., Kim, H.S., & Lee, M. (2022). HPV-induced carcinogenesis: Dual virologic and host-driven mechanisms. Journal of Virology, 96(15), e00378-22.
https://doi.org/10.1128/jvi.00378-22
4. Clarke, M.A., et al. (2020). Human papillomavirus DNA versus messenger RNA testing in cervical screening. Journal of Clinical Virology, 129, 104556.
https://doi.org/10.1016/j.jcv.2020.104556
5. Doorbar, J., et al. (2015). The biology and life-cycle of human papillomaviruses. Virology, 445(1–2), 297–310. https://doi.org/10.1016/j.virol.2015.02.006
6. Drolet, M., Bénard, É., et al. (2019). Population-level impact and herd effects following HPV vaccination programs: Updated meta-analysis. The Lancet Infectious Diseases, 19(5), 566–576. https://doi.org/10.1016/S1473-3099(18)30736-4
7. McBride, A.A. (2021). Oncogenic human papillomaviruses. Philosophical Transactions of the Royal Society B, 376(1835), 20200269. https://doi.org/10.1098/rstb.2020.0269
8. Schiffman, M., et al. (2016). Carcinogenic human papillomavirus infection. Journal of Lower Genital Tract Disease, 20(1), 11–14. https://doi.org/10.1097/LGT.0000000000000216
9. Stevanović, S., et al. (2015). Adoptive T-cell therapy targeting HPV oncoproteins in HPV-associated epithelial cancers. Science Translational Medicine, 7(283), 283ra52. https://doi.org/10.1126/scitranslmed.aac0246
10. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide. CA: Cancer J Clin, 71(3), 209–249. https://doi.org/10.3322/caac.21660
11. Wang, L., et al. (2023). AI-empowered genome editing for HPV-driven cancers. Trends in Biotechnology, 41(6), 345–359. https://doi.org/10.1016/j.tibtech.2022.12.007
12. World Health Organization. (2023). Cervical cancer fact sheet – IARC GLOBOCAN 2022. https://gco.iarc.fr/today/data/factsheets/cancers/23-Cervix-uteri-fact-sheet.pdf
13. Alanis-Lobato, G., Zohren, J., McCarthy, A., Fogarty, N. M. E., & Niakan, K. K. (2023). Genome editing safety of CRISPR-Cas systems: Minimizing off-target effects. Nature Reviews Genetics, 24(4), 226–239. https://doi.org/10.1038/s41576-023-00577-0
14. Chen, L., & Wang, Y. (2024). CRISPR-modified T cells for HPV-related cancers: Evolving from immune concept to therapeutic reality. Frontiers in Immunology, 15, 1130521. https://doi.org/10.3389/fimmu.2024.1130521
15. Chen, Q., Zhang, Y., Yu, H., et al. (2024). Cervical cell-targeted lipid nanoparticle delivery of CRISPR/Cas for HPV gene silencing. Nature Biotechnology, 42(2), 101–112. https://doi.org/10.1038/s41587-023-00821-6
16. Doultsinos, D., Li, M., Singh, S., & Yu, H. (2022). AI-driven optimization of delivery systems for precision genome editing. Nature Biomedical Engineering, 6(9), 943–958. https://doi.org/10.1038/s41551-022-00891-z
17. Guan, Z., Liu, X., Wang, H., et al. (2024). Targeting HPV oncogenes using CRISPR/Cas9 restores tumor suppressor pathways in cervical cancer. Journal of Translational Medicine, 22(18), 145. https://doi.org/10.1186/s12967-024-04578-2
18. Hu, Y., Zhang, Q., & Sun, J. (2023). CRISPR-mediated targeting of HPV E6/E7 shows therapeutic potential in cervical carcinoma models. Molecular Therapy – Nucleic Acids, 33, 124–135. https://doi.org/10.1016/j.omtn.2023.05.015
19. Jubair, L., Fallaha, S., & McMillan, N. A. J. (2019). Systemic delivery of CRISPR/Cas9 targeting HPV eliminates tumors in murine models. Molecular Therapy, 27(12), 2100–2111. https://doi.org/10.1016/j.ymthe.2019.09.013
20. Lee, D., Chen, J., & Wang, L. (2024). Using CRISPR-based tools to investigate viral-host genome interactions in HPV-related cancers. Virology Reports, 10, 100215. https://doi.org/10.1016/j.virolrep.2023.100215
21. Liu, Y., Zhang, H., & Cao, X. (2023). Advances in genome editing for HPV-induced malignancies. International Journal of Molecular Sciences, 24(2), 10103. https://doi.org/10.3390/ijms240210103
22. Munir, A., Ul-Haq, Z., Arif, A., & Rana, M. (2024). Genome editing for therapeutic vaccination against HPV: A new frontier. Journal of Cancer Research and Therapeutics, 20(1), 34–40. https://doi.org/10.4103/jcrt.jcrt_241_23
23. Sato, Y., Yamada, A., & Nakamura, M. (2022). AAV-mediated CRISPR delivery targeting HPV leads to suppression of cervical cancer progression. Scientific Reports, 12, 21568. https://doi.org/10.1038/s41598-022-25521-9
24. Wang, L., Zhou, J., Tang, H., et al. (2023). Intelligent delivery of CRISPR-Cas9 with synthetic vectors. Trends in Biotechnology, 41(3), 423–435. https://doi.org/10.1016/j.tibtech.2022.12.007
25. Xu, H., Lin, X., & Zhao, M. (2023). AI-assisted precision design of guide RNAs for HPV gene targeting. Computational and Structural Biotechnology Journal, 21, 660–670. https://doi.org/10.1016/j.csbj.2023.01.011
26. Zhen, W., Yang, L., & Tang, H. (2024). Cas9-based targeting of HPV E6/E7 in HeLa cells: Implications for tumor suppression. Cancers, 16(3), 489. https://doi.org/10.3390/cancers16030489
27. Zhao, Y., Wang, M., & Zhang, X. (2020). Efficient AAV vector–mediated CRISPR/Cas9 targeting HPV oncogenes: Potential and limitations. Molecular Biotechnology, 62, 600–608. https://doi.org/10.1007/s12033-020-00254-z
28. Bruni, L., Saura-Lázaro, A., Montoliu, A., Brotons, M., Alemany, L., & de Sanjosé, S. (2023). Human papillomavirus and related diseases: Summary report 2023. ICO/IARC HPV Information Centre. https://hpvcentre.net/statistics/reports/XWX.pdf
29. Doultsinos, D., Li, M., Singh, S., & Yu, H. (2022). AI-augmented design of gene therapies for virus-associated cancers. Nature Biomedical Engineering, 6(9), 943–958. https://doi.org/10.1038/s41551-022-00891-z
30. Kim, D., Bae, S., Jung, K. et al. (2023). DeepCRISPR: an AI platform for accurate guide RNA prediction. Nature Machine Intelligence, 5(5), 417–426. https://doi.org/10.1038/s42256-023-00601-4
31. Kim, E., Newman, J. A., Zhang, L., & Lawrence, D. H. (2024). Reinforcement learning models for strategic multiplexed genome editing. Bioinformatics Advances, 3(1), vbad124. https://doi.org/10.1093/bioadv/vbad124
32. National Cancer Institute. (2025). AI predicts response to CRISPR-based therapy in HPV-positive cancers. Cancer Currents. https://www.cancer.gov/news-events/cancer-currents-blog/2025/ai-predicts-crispr-response
33. Nguyen, T., Lin, D., & Zhao, Y. (2024). Mapping immunologic changes in cervical tumors using AI-driven CRISPR simulations. Frontiers in Immunology, 15, 1048517. https://doi.org/10.3389/fimmu.2024.1048517
34. Premier Science. (2025). Clinical evaluation of AINU and CerviScan-AI for cervical cancer detection. Premier Journal of Science, 24(7), 474. https://premierscience.com/pjs-24-474/
35. Rahman, H., Liao, T., & Kang, M. (2023). Multiplex CRISPR therapy targeting HPV and host co-factors in cancer. Molecular Therapy–Oncolytics, 29, 176–185. https://doi.org/10.1016/j.omto.2023.04.017
36. Shin, W., Barman, R., & Li, X. (2024). HPV integration mapping and AI-guided CRISPR targeting enhance diagnostic accuracy. Virology Journal, 21(1), 102. https://doi.org/10.1186/s12985-024-02055-1
37. Soni, A., Rosario, C., & Benson, S. (2024). Time-optimized CRISPR-Cas9 delivery in proliferative tumors: An AI approach. Trends in Cancer, 10(2), 156–167. https://doi.org/10.1016/j.trecan.2024.01.005
38. Tseng, P., Hou, Q., & Li, Y. (2024). Integrative single-cell analysis improves CRISPR-based therapy personalization. Nature Biotechnology, 42(2), 213–221. https://doi.org/10.1038/s41587-023-00871-8
39. Wang, L., Zhou, J., Tang, H., et al. (2023). Smart delivery of CRISPR-Cas9 for virus-driven tumors. Trends in Biotechnology, 41(3), 423–435. https://doi.org/10.1016/j.tibtech.2022.12.007
40. Xu, H., Lin, X., & Zhao, M. (2023). AI-assisted precision design in CRISPR therapeutics for HPV-related cancers. Computational and Structural Biotechnology Journal, 21, 660–670. https://doi.org/10.1016/j.csbj.2023.01.011
41. Zhao, M., & Liu, Y. (2023). Machine learning strategies for personalizing CRISPR-Cas therapies in cervical cancer. Translational Oncology, 27, 101580. https://doi.org/10.1016/j.tranon.2023.101580
42. Zhou, Y., Singh, R., & Patel, Y. (2025). Deep learning–guided CRISPR gRNAs for HPV gene targeting in cervical cancer. Journal of Translational Medicine, 23(4), 112. https://doi.org/10.1186/s12967-025-04317-w
43. Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2022). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 40(7), 1033–1043. https://doi.org/10.1038/s41587-021-01156-8
44. Bruni, L. et al. (2023). Human Papillomavirus and Related Cancers in the World. ICO/IARC HPV Information Centre. https://hpvcentre.net/statistics/reports/XWX.pdf
45. Fatumo, S., Emmanuel, M., Chikowore, T., et al. (2022). Promoting the genomic revolution in Africa through educational reform and capacity building. Nature Genetics, 54(4), 449–456. https://doi.org/10.1038/s41588-022-01055-4
46. Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), e745–e750. https://doi.org/10.1016/S2589-7500(21)00208-9
47. Haeussler, M., & Concordet, J. P. (2023). Genome editing: Accuracy matters. Nature Reviews Genetics, 24(1), 3–6. https://doi.org/10.1038/s41576-022-00517-1
48. Jasanoff, S., Hurlbut, J. B., & Saha, K. (2021). CRISPR democracy: Gene editing and the need for inclusive deliberation. Issues in Science and Technology, 37(4), 25–30.
49. Kim, H., Kim, D., Jung, K., et al. (2023). AI-powered prediction of CRISPR off-target activity using high-resolution genomic modeling. Genome Biology, 24(1), 3. https://doi.org/10.1186/s13059-022-02791-w
50. Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don’t edit the human germ line. Nature, 519(7544), 410–411. https://doi.org/10.1038/519410a
51. Samek, W., Montavon, G., Lapuschkin, S., et al. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247–278. https://doi.org/10.1109/JPROC.2020.3040483
52. Kusakabe, M., et al. (2023). Carcinogenesis and management of human papillomavirus-associated cervical cancer. Clinical and Experimental Medicine, 23(6), 2719-2737.
53. Wu, J., et al. (2025). Global burden of cervical cancer: current estimates and future projections. The Lancet Global Health, 13(2), e234-e245.
54. World Health Organization. (2024, March 4). Cervical cancer. WHO Fact Sheet.
55. Gao, C., et al. (2022). The application of CRISPR/Cas9 system in cervical cancer treatment. Cancer Gene Therapy, 29(7), 1108-1118.
56. Kermanshahi, A. Z., et al. (2025). HPV-driven cancers: a looming threat and the potential of CRISPR/Cas9 as a therapeutic strategy. Molecular Medicine Reports, 31(3), 112.
57. Wang, J., et al. (2024). Artificial intelligence enables precision diagnosis of cervical cancer screening. Nature Communications, 15(1), 4251.
58. Hou, X., et al. (2022). Artificial intelligence in cervical cancer screening and diagnosis. Frontiers in Oncology, 12, 851868.
59. Zaravinos, A. (2024). Unveiling the future of oncology and precision medicine through data science. Biomedicines, 12(6), 1231.
60. Bruni, L., Albero, G., Serrano, B., Mena, M., Collado, J. J., Gómez, D., Muñoz, J., Bosch, F. X., & de Sanjosé, S. (2023). Human Papillomavirus and Related Diseases in the World. Summary Report 10 March 2023. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). https://hpvcentre.net/statistics/reports/XWX.pdf
61. International Agency for Research on Cancer. (2021). Cervix uteri: Cancer fact sheet. GLOBOCAN 2020. https://gco.iarc.fr/today/data/factsheets/cancers/23-Cervix-uteri-fact-sheet.pdf
62. Li, Y., Dogan-Artun, N., Saad, M., et al. (2022). A multi-ancestry genome-wide association study of cervical cancer. Nature Genetics, 54(6), 859–868. https://doi.org/10.1038/s41588-022-01055-4
63. Wang, L., Wang, Q., Davis, P., Wang, J., et al. (2021). Digital health technology for cervical cancer control in low- and middle-income countries: A scoping review. The Lancet Digital Health, 3(7), e418-e426.[https://doi.org/10.1016/S2589-7500(21)00208-9]
64. Marvasti, F., & Sarrafzadeh, M. (2020). Wearable devices for health monitoring. Proceedings of the IEEE, 109(4), 363–379. https://doi.org/10.1109/JPROC.2020.3040483
65. Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., et al. (2020). Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Nature Medicine, 24(9), 1450–1461. https://doi.org/10.1038/s41591-018-0300-7
66. Broutet, N., Lehnertz, N., Mehl, G., et al. (2019). Effective interventions to control cervical cancer in low- and middle-income countries: a systematic review. The Lancet Global Health, 7(7), e904–e915.[https://doi.org/10.1016/S2214-109X(19)30482-6]