LITERATURE REVIEW ON SIDDHA MEDICINE MUTHU PARPAM FOR THE MANAGEMENT OF ALATHIDU SANNI – A DRUG REVIEW
Main Article Content
Keywords
Siddha, Muthu parpam, Alathidu Sanni, Attention Deficit Hyperactive Disorder
Abstract
Siddha medicine is one of the traditional medical system, predominantly practiced in South India. It is based on maintaining balance among the three vital humors—Vatham (air), Pitham (fire), and Iyyam (water) and their imbalance results in diseases. Siddha therapeutic intervention is broadly classified into 32 internal medicines and 32 external therapies. Parpam is one of the 32 types of internal medicines in the Siddha system and is recognized for its high potency and long shelf life, often extending up to 100 years. It is traditionally prepared by triturating mineral or animal-origin substances with herbs, followed by a unique incineration process known as Pudam. Muthu Parpam is a herbomineral formulation commonly used for Alathidu Sanni in children(1).
Alathidu sanni is one among nine types of Sanni. Alathidu sanni was compared to Attention Deficit Hyperactive Disorder in children. The clinical features of Alathidu sanni were closely related with ADHD. ADHD is one of the most prevalent neurodevelopmental disorders in childhood and constitutes a significant chronic health condition among school-aged children. It is primarily characterized by persistent patterns of inattention, impulsivity, hyperactivity, impaired impulse regulation, reduced self-inhibitory control, and continuous motor restlessness. Muthu parpam has been indicated in the Siddha literature for a wide variety of diseases. This review article gives insight on the efficacy of Muthu Parpam for Alathidu Sanni based on review of various literatures and scientific studies.
References
2. K.N.Kuppusamy Muthaliyar, K. S.Uthamanarayanan, Siddha Vaithiya Thiratttu; pg no 154-155
3. Ayano G, Demelash S, Gizachew Y, Tsegay L, Alati R. The global prevalence of attention deficit hyperactivity disorder in children and adolescents: An umbrella review of meta-analyses. J Affect Disord. 2023 Oct 15;339:860-866. doi: 10.1016/j.jad.2023.07.071. Epub 2023 Jul 24. PMID: 37495084.
4. Thomas, R., Sanders, S., Doust, J., Beller, E., & Glasziou, P. (2023). Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. JAMA Pediatrics, 177(2), e220734. PMID: 37495084
5. Kim, H. W., Lee, E. J., Jun, I., & Knowles, J. C. (2011). Biological effectiveness of nacre for wound healing and tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 96B(2), 333–339. https://doi.org/10.1002/jbm.b.31774
6. Zhang, C., Xie, L., Huang, J., & Zhang, R. (2003). Biomineralization and antioxidant activity of nacre matrix proteins. Biomaterials, 24(7), 1233–1238. https://doi.org/10.1016/S0142-9612(02)00456-5
7. Liao, J., Zhang, Y., Wang, L., & Chen, X. (2002). Anti-inflammatory potential of nacre powders in vitro and in vivo. Acta Biomaterialia, 28(15), 2025–2032.
8. Shen, X., Zhang, Y., Gu, Y., Xu, Y., & Liu, Y. (2006). Nacre, a natural biomaterial, induces osteoblast differentiation via the ERK pathway. Biomaterials, 27(29), 4014–4020. https://doi.org/10.1016/j.biomaterials.2006.03.013
9. Zoysa, M., Nikapitiya, C., Whang, I., Lee, J., & Lee, J. S. (2010). Antibacterial activity of marine mollusk-derived proteins against human pathogens. Marine Drugs, 8(12), 2673–2685. https://doi.org/10.3390/md8122673
10. Falini, G., Albeck, S., Weiner, S., & Addadi, L. (1996). Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 271(5245), 67–69.
11. Arulmozhi, D. K., Veeranjaneyulu, A., Bodhankar, S. L., & Arora, S. K. (2007). Pharmacological activities of Vitex negundo. Indian Journal of Pharmacology, 39(2), 69–73. https://doi.org/10.4103/0253-7613.33432
12. Dharmasiri, M. G., Jayakody, J. R. A. C., Galhena, G., Liyanage, S. S. P., & Ratnasooriya, W. D. (2003). Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. Journal of Ethnopharmacology, 87(2–3), 199–206. https://doi.org/10.1016/S0378-8741(03)00161-4
13. Kasture, V. S., Chopde, C. T., & Deshmukh, V. K. (2000). Anticonvulsant activity of Vitex negundo leaves. Indian Journal of Pharmacology, 32(4), 258–259.
14. Kiritikar, K. R., & Basu, B. D. (2001). Indian Medicinal Plants (Vol. 3). Dehradun: International Book Distributors.
15. Ravikumar, V., Shivashangari, K. S., & Devaki, T. (2005). Hepatoprotective activity of Vitex negundo against carbon tetrachloride-induced liver damage in rats. Journal of Ethnopharmacology, 101(1–3), 184–189.
16. Gupta, M., Mazumder, U. K., & Kumar, R. S. (2005). Antioxidant and hepatoprotective effects of Curculigo orchioides Gaertn. root extract. Indian Journal of Experimental Biology, 43(6), 526–532.
17. Thakur, M., Chauhan, N. S., & Dixit, V. K. (2009). Aphrodisiac activity of Curculigo orchioides root extracts in male rats. Pharmacognosy Magazine, 5(19), 62–65.
18. Panda, H., & Kar, A. (2008). Evaluation of the anti-osteoporotic potential of Curculigo orchioides in an ovariectomized rat model. Journal of Ethnopharmacology, 118(2), 271–275.
19. Gokaraju, G. R., Elango, K., & Rao, R. B. (2010). Immunomodulatory activity of polysaccharide-enriched extract of Curculigo orchioides Gaertn. Phytotherapy Research, 24(5), 729–734.
20. Zhang, W. D., et al. (2007). Curculigoside, a phenolic glycoside from Curculigo orchioides, shows neuroprotective properties. Biological & Pharmaceutical Bulletin, 30(3), 514–517.
21. Yamagami, H., Fuji, T., Wako, M., & Hasegawa, Y. (2021). Sulfated polysaccharide isolated from oyster nacre improves scopolamine induced memory impairment. Antioxidants, 10(4), 505.
22. Yamagami, H., et al. (2022). Nacre extract from pearl oyster attenuates amyloid β induced memory impairment. Journal of Pharmacognosy.
23. Zhao, et al. (2015). Sedative and cognitive effects of pearl powder in traditional and modern use. Chinese Traditional Medicine Review.
24. Mehta K, Bhagwat DP, Devraj, Sehgal P, Mittal G, Suchal K. Vitex negundo protects against cerebral ischemia-reperfusion injury in mouse via attenuating behavioral deficits and oxidative damage. Psychopharmacology (Berl). 2022 Feb;239(2):573-587. doi: 10.1007/s00213-021-06050-z. Epub 2022 Jan 24. PMID: 35072759.
25. Vannur A, Biradar PR, Patil V. Experimental validation of Vitex negundo leaves hydroalcoholic extract for neuroprotection in haloperidol induced parkinson's disease in rat. Metab Brain Dis. 2022 Feb;37(2):411-426. doi: 10.1007/s11011-021-00878-2. Epub 2022 Jan 13. PMID: 35023027.
26. Wu XY, Li JZ, Guo JZ, Hou BY. Ameliorative effects of curculigoside from Curculigo orchioides Gaertn on learning and memory in aged rats. Molecules. 2012 Aug 24;17(9):10108-18. doi: 10.3390/molecules170910108. PMID: 22922281; PMCID: PMC6268871.
27. Um, M. Y., Choi, W. H., Aan, J. Y., Kim, S. R., & Ha, T. Y. (2006). Ameliorative effects of curculigoside from Curculigo orchioides Gaertn on learning and memory in aged rats. Molecules, 17(9), 10108.
28. Tian, Z., Yu, W., Zhao, M. G., & et al. (2012). Neuroprotective effects of curculigoside against NMDA-induced neuronal excitotoxicity in vitro. Food and Chemical Toxicology, 50, 4010–4015.
29. Nair, A., et al. (2015). Protective effect of Curculigo orchioides extract on cyclophosphamide-induced neurotoxicity in rats. Free Radical Biology & Medicine, 78, 50–58.
30. Soni, N., Lal, V. K., & Agrawal, S. (2013). Anxiolytic effect of Curculigo orchioides in elevated plus maze and light-dark models in mice. Journal of Chemical and Pharmaceutical Research, 5(3), 2383.
