GUT MICROBIOME IN METABOLIC DISORDERS
Main Article Content
Keywords
Gut microbiome, metabolic disorders, obesity, type 2 diabetes, short-chain fatty acids, dysbiosis, metabolic syndrome
Abstract
The human gut microbiome, which amounts to trillions of microbes, plays a role in the maintenance of metabolic homeostasis. The advances of recent times in metagenomics and metabolomics have established that changes in gut microbial composition, or dysbiosis, are strongly associated with metabolic disorders such as obesity, T2DM, metabolic syndrome, and NAFLD. Studies demonstrate that T2DM patients have a 15–25% reduction in butyrate-producing bacteria (e.g., Faecalibacterium prausnitzii, Roseburia spp.) and a 40% increase in opportunistic pathogens (Escherichia, Ruminococcus gnavus) compared to healthy controls. Short-chain fatty acids (SCFAs) of microbiota such as acetate, propionate, and butyrate have been found through experimental trials to strongly control host metabolism to increase insulin sensitivity by 25–40% and reduce fasting glucose levels by up to 1.2 mmol/L (p < 0.05). In parallel, fecal microbiota transplantation (FMT) from lean donor to obese or insulin-resistant recipient resulted in a median rise in peripheral insulin sensitivity from 26.2 to 45.3 μmol·kg⁻¹·min⁻¹ after six weeks (p < 0.05).In addition, diet interventions like high-fiber supplementation were found to increase circulating SCFAs by 60–70%, which contributed to enhanced lipid metabolism and reduced low-grade inflammation indicated by a 35% decrease in plasma TNF-α (p < 0.01). In spite of these promising results, interindividual variation and methodological heterogeneity—most notably, sequencing depth and microbial diversity metrics—preclude direct comparability between studies.
To sum up, numerous pieces of evidence indicate that the selective adjustment of gut microbiota through prebiotics, probiotics, diet, and FMT has a very promising therapeutic potential for the handling of metabolic disorders. The full understanding of these complex interactions between the host and microbes may lead to the development of precision therapies based on the microbiome for the prevention and treatment of metabolic diseases.
References
2. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772.
3. Dao, M. C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E. O., ... & MICRO-Obes Consortium. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-436.
4. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., ... & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559-563.
5. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., ... & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the national academy of sciences, 110(22), 9066-9071.
6. Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55-71.
7. Francino, M. (2016). Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Frontiers in microbiology, 6, 164577.
8. Larsen, N., Vogensen, F. K., Van Den Berg, F. W., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., ... & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS one, 5(2), e9085.
9. Lynch, S. V., & Pedersen, O. (2016). The human intestinal microbiome in health and disease. New England journal of medicine, 375(24), 2369-2379.
10. Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes, 7(3), 189-200.
11. Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current opinion in gastroenterology, 31(1), 69-75.
12. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. nature, 444(7122), 1027-1031.
13. Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. Bmj, 361.
14. Wahlström, A., Sayin, S. I., Marschall, H. U., & Bäckhed, F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell metabolism, 24(1), 41-50.
15. Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., ... & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913-1920.
16. Korpela, K., Salonen, A., Vepsäläinen, O., Suomalainen, M., Kolmeder, C., Varjosalo, M., ... & de Vos, W. M. (2018). Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome, 6(1), 182.
17. Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R. S., Bartelsman, J. F., ... & Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4), 913-916.
18. Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., ... & Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541-546.
19. Patloka, O., Komprda, T., & Franke, G. (2024). Review of the relationships between human gut microbiome, diet, and obesity. Nutrients, 16(23), 3996.
20. Sze, M. A., & Schloss, P. D. (2016). Looking for a signal in the noise: revisiting obesity and the microbiome. MBio, 7(4), 10-1128.
21. Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., ... & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the national academy of sciences, 101(44), 15718-15723.
22. Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-249.
23. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., ... & Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. nature, 490(7418), 55-60.
24. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., ... & Zhang, C. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151-1156.
25. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
26. Crovesy, L., Masterson, D., & Rosado, E. L. (2020). Profile of the gut microbiota of adults with obesity: a systematic review. European journal of clinical nutrition, 74(9), 1251-1262.
27. Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., ... & Pedersen, O. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262-266.
28. Enache, R. M., Profir, M., Roşu, O. A., Creţoiu, S. M., & Gaspar, B. S. (2024). The role of gut microbiota in the onset and progression of obesity and associated comorbidities. International Journal of Molecular Sciences, 25(22), 12321.
29. Green, M., Arora, K., & Prakash, S. (2020). Microbial medicine: prebiotic and probiotic functional foods to target obesity and metabolic syndrome. International journal of molecular sciences, 21(8), 2890.
