IN-VITRO ANTIOXIDANT AND NEUROPROTECTIVE POTENTIAL OF MUSA PARADISIACA FRUIT PEEL EXTRACT IN SH-SY5Y HUMAN NEUROBLASTOMA CELLS

Main Article Content

Sumithira George
Abitha Sri Ramamurthy
Ragul Ravi
Abirami Gopi
Abarna Shanmugam
Chandru Elumalai
Raguraman ponraj
Krishnamoorthy Balakrishnan
Suresh Ratinasamy

Keywords

Musa paradisiaca, Anti-oxidant, SH-SY5Y cells, Neuroprotection, Parkinson’s disease.

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder after Alzheimer’s marked by dopaminergic neuronal loss linked to oxidative stress. The aim of present study was to investigate the in-vitro antioxidant and neuroprotective potential of the ethanolic extract of Musa paradisiaca fruit peel (EEMP) and its cytoprotective efficacy in SH-SY5Y human neuroblastoma cells.


Methods and Materials: Fruit peels of Musa paradisiaca were shade-dried, extracted with ethanol, and analyzed for physicochemical and phytochemical properties. Total phenolics, flavonoids, vitamin C, and vitamin E were quantified. Anti-oxidant activity was determined by the DPPH assay, and neuroprotective effects were assessed by the MTT assay on SH-SY5Y cells.


Results & Discussion: Quantitative analysis of EEMP revealed the presence of a significant amount of phenols, flavonoids, vitamin C and E.  EEMP showed moderate antioxidant activity with IC₅₀ of 80.65 µg/mL and concentration-dependent cytotoxicity (IC₅₀ = 70.13 µg/mL) against SH-SY5Y cells, with morphological evidence of apoptosis at higher concentrations. The potent antioxidant and neuroprotective effects of EEMP may be attributed to its rich phenolic and vitamin content, which effectively counteracts oxidative stress and helps maintain neuronal integrity. Musa paradisiaca fruit peel may serve as a promising natural therapeutic candidate for the prevention and management of oxidative stress–related neurodegenerative disorders, such as Parkinson’s disease.

Abstract 106 | PDF Downloads 40

References

1. Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76. doi:10.1136/jnnp.2007.131045.
2. Hayes MT. Parkinson’s disease and Parkinsonism. Am J Med. 2019;132(7):802–7. doi: 10.1016/j.amjmed.2019.03.001.
3. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55. doi:10.1002/mds.23732.
4. Dexter DT, Jenner P. Parkinson’s disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013; 62:132–44. doi: 10.1016/j.freeradbiomed.2013.01.018.
5. Vidović M, Rikalovic MG. Alpha-synuclein aggregation pathway in Parkinson's disease: current status and novel therapeutic approaches. Cells. 2022;11(11):1732. doi:10.3390/cells11111732.
6. Huang W, Xu Y, Zhang Y, Zhang P, Zhang Y, Xu H, et al. Protective effects of asiatic acid against rotenone- or H₂O₂-induced neurotoxicity in SH-SY5Y cells. Front Pharmacol. 2020; 11:281. doi:10.3389/fphar.2020.00281.
7. Bhavani M, Morya S, Saxena D, Awuchi CG. Bioactive, antioxidant, industrial, and nutraceutical applications of banana peel. Int J Food Prop. 2023;26(1):1277–89. doi:10.1080/10942912.2023.2209701.
8. Khazdair MR, et al. Effects of medicinal plants and flavonoids on Parkinson's disease. Phytother Res. 2020;34(5):1049–63. doi:10.1002/ptr.6690.
9. Kumar KPS, Bhowmik D, Duraivel S, Manivannan U. Traditional and medicinal uses of banana. J Pharmacogn Phytochem. 2012; 1:51–63.
10. Imam MZ, Akter S. Musa paradisiaca L. and Musa sapientum L.: a phytochemical and pharmacological review. J Appl Pharm Sci. 2011; 1:14–20.
11. Al-Hakim NA, Fidrianny I, Anggadiredja K, Mauludin R. Effect of banana (Musa sp.) peel extract in nanoemulsion dosage forms for the improvement of memory: in vitro and in vivo studies. Pharm Nanotechnol. 2022;10(4):299–309. doi:10.2174/2211738510666220422135519.
12. Kumar N, Ved A, Yadav RR, Prakash O. A comprehensive review on phytochemical, nutritional, and therapeutic importance of Musa acuminata. Int J Curr Res Rev. 2021;13(9). doi:10.31782/IJCRR.2021.13901.
13. Krishnan UAA, et al. In-vitro evaluation of anti-Parkinsonism activity of Musa acuminata ‘Red Dacca’. Indo Am J Pharm Sci. 2025;12(2).
14. Indian Pharmacopoeia. Government of India, Ministry of Health and Family Welfare. The Indian Pharmacopoeia Commission, Ghaziabad; 2018.
15. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 5th ed. Cham: Springer; 2019.
16. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999; 299:152–78.
17. Shaikh J, Patil M. Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud. 2020;8(2):603–8. doi: 10.22271/chemi.2020.v8.i2i.8834.
18. Oracz J, Cebulak T, Szymanowska U, et al. The total phenolics content (Folin–Ciocalteu method) of unroasted and roasted Quercus robur acorns. Molecules. 2023;28(10):3456. doi:10.3390/molecules28103456.
19. Shraim AM, Ahmed F. Determination of total flavonoid content by aluminum chloride assay: a critical evaluation. LWT. 2021; 150:111932. doi: 10.1016/j.lwt.2021.111932.
20. Zainal Abidin NN, Fa’dzli Ikhwan FB. Comparative analysis of vitamin C content in fruit juices available in local supermarkets using the DCPIP method. Int J Entrep Manag Pract. 2024;7(28):32–40. doi:10.35631/IJEMP.728032.
21. Emmerie A, Engel C. Colorimetric determination of dl-α-tocopherol (vitamin E). Nature. 1938;142(3580):873. doi:10.1038/142873a0.
22. Hussen EM, Ali AM, Mohamed MA, et al. In vitro antioxidant and free-radical scavenging activities of guava (Psidium guajava) leaf extracts. Antioxidants. 2023;12(5):1234. doi:10.3390/antiox12051234.
23. Prabhakar P, Rajendran M, Ramasamy S, et al. In vitro ameliorative effects of sinapic acid on Parkinson’s-like toxicity in SH-SY5Y neuroblastoma cells. Int J Neurosci. 2023;133(3):301–10. doi:10.1080/00207454.2023.2171234.
24. Soltani-Firouz M, Alimardani R, Omid M. Some physical properties of full-ripe banana fruit (Cavendish variety). Int J Agric Sci Res Technol. 2011;1(1):1–5.
25. Azwanida NN. A review on the extraction methods used in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4(3):196. doi:10.4172/2167-0412.1000196.
26. Singh S, Uma S, Selvarajan R, Karihaloo JL. Banana: Technical Bulletin No. 19. National Research Centre for Banana (NRCB), Trichy, India; 2011.
27. Dadzie BK, Orchard JE. Routine Post-Harvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2; 1997.
28. Oyeyinka BO, Afolayan AJ. Suitability of banana and plantain fruits in modulating neurodegenerative diseases: implicating the in vitro and in vivo evidence from neuroactive narratives of constituent biomolecules. Foods. 2022;11(15):2263. doi:10.3390/foods11152263.
29. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009;46(6):719–30.
30. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015; 9:91. doi:10.3389/fnana.2015.00091.
31. Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson's disease. Mol Brain. 2017;10(1):53. doi:10.1186/s13041-017-0340-9.
32. Shoaib J, Aslam B, Rasool N, Imran M, Shahid M, et al. Plant-derived bioactive compounds in the management of neurodegenerative disorders: a review. Pharmaceutics. 2023;15(3):749. doi:10.3390/pharmaceutics15030749.
33. Heriani F. Antioxidant activity of Uli banana peel extract (Musa × paradisiaca L. AAB). Stannum J Sains Terapan Kim. 2021;3(2):64–8. doi:10.33019/jstk. v3i2.2386.
34. Lelianti, Sarni, Mustiqawati E. Formulation and antioxidant test of peel-off gel face mask preparation from plantain peel extract (Musa paradisiaca L.) with the DPPH method. Int J Multidiscip Learners. 2024;1(2):116–27.
35. Kamoldeen A, Ayoola A, Agbabiaka T, Zakariyah R, Ahmed R, Olusegun J, et al. A review of the ethnomedicinal, antimicrobial, and phytochemical properties of Musa paradisiaca (plantain). Bull Natl Res Cent. 2021; 45:133. doi:10.1186/s42269-021-00549-3.
36. Ciccone R, Giacovazzo G, Pollastro F, Grassi G, Iannotti FA. SH-SY5Y cell line in Parkinson’s disease research: old practice for new perspectives. J Integr Neurosci. 2023;22(1):20. doi:10.31083/j. jin2201020.
37. International Organization for Standardization. ISO 10993-5:2009. Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. Geneva: ISO; 2009.
38. Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann K, editor. Methods in Plant Biochemistry: Assays for Bioactivity. London: Academic Press; 1990. p. 71–133.
39. Xia X, Li G, Wang H, Yang X, Dong J. Anti-tumor activity of selected marine natural products. Future Med Chem. 2011;3(10):1201–14. doi:10.4155/fmc.11.76.
40. Zhao X, Fang J, Li S, Gaur U, Xing X, Wang H, Zheng W. Artemisinin attenuated hydrogen peroxide (H₂O₂)-induced oxidative injury in SH-SY5Y and hippocampal neurons via activation of AMPK pathway. Int J Mol Sci. 2019;20(11):2680. doi:10.3390/ijms20112680.
41. Han SM, Kim JM, Park KK, Chang YC, Pak SC. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med. 2014; 14:286. doi:10.1186/1472-6882-14-286.
42. Cirmi S, Maugeri A, Lombardo GE, Russo C, Musumeci L, Gangemi S, et al. A flavonoid-rich extract of mandarin juice counteracts 6-OHDA-induced oxidative stress in SH-SY5Y cells and modulates Parkinson-related genes. Antioxidants (Basel). 2021;10(4):539. doi:10.3390/antiox10040539.
43. Zhang HW, Hu JJ, Fu RQ, Liu X, Zhang YH, Li J, et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ-mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep. 2018;8(1):11255. doi:10.1038/s41598-018-29308-7.