Distribution of hla, hlb, hlgC, hld & cylA hemolysin genes and their alleles in different bacterial species isolated from the variant clinical sources in Basrah

Main Article Content

Zeena Hashim Abd Al-Wahid
Munaff Jawdat Abd Al-Abbas

Keywords

Hemolysis, Alleles , Alpha, Beta , Delta, Gamma, Mutation

Abstract

Hemolysin is the most important virulence factor responsible for defecting in the plasma membranes of various types of host cells. One hundred and twenty-eight samples were collected from different clinical sources showing 111 (86.72%) bacterial isolates including 24 different bacterial species identified by 16S rRNA sequencing. Most of bacterial isolates have the ability to lyse the blood cells,
delta hemolysin showed 50 (45.05 %) of isolates were positive on blood agar (BA), while 97 (87.39%) of isolates had the hld gene, followed by gamma 47(42.43%) on BA and 98 (88.28%) have of hlgC and 39 (35.14%) of isolates as beta on BA and 75 (67.57%) of hlb followed by alpha 37(33.33%) on BA and 46 (41.4%) of hla. Finally, 68 (61.26%) had the cytolysin A gene (cylA). The sequence of
hemolysins revealed different number of alleles for hla, hlb, hlg and hld except for the cylA gene containing one allele only. The hemolysins were detected in 24 different bacterial species in addition to S. aureus. hla showed a new spontaneous mutation containing a new allele recorded in the NCBI.

Abstract 256 | pdf Downloads 145

References

1. Abd Al Wahid, Z., & Abd Al-Abbas, M. J. (2019). Detection of E. Coli Strains Isolated from Water Sources and Diarrhea Cases by Random
Amplified Polymorphic DNA in Basrah Governorate. J International Journal of Sciences, 8, 68-83.
2. Blake, K. J., Baral, P., Voisin, T., Lubkin, A., Pinho-Ribeiro, F. A., Adams, K. L., ... & Chiu, I. M. (2018). Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nature communications, 9(1), 1-15.
3. Boyce, J. M. (1985). Detection of synergistic hemolytic activity of Staphylococcus aureus with the cathra replicator. Journal of clinical
microbiology, 21(5), 835-837.
4. Bullen, J. J., Rogers, H. J., Spalding, P. B., & Ward, C. G. (2005). Iron and infection: the heart of the matter. FEMS Immunology & Medical
Microbiology, 43(3), 325-330.
5. Buxton, R. (2005). Blood agar plates and hemolysis protocols. American Society for Microbiology, 1-9.
6. Clewell, D. B. (1993). Bacterial sex pheromoneinduced plasmid transfer.
7. Coia, J. E., Browning, L., Haines, L., Birkbeck, T. H., & Platt, D. J. (1992). Comparison of enterotoxins and haemolysins produced by methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus. Journal of medical microbiology, 36(3), 164-171.
8. da Silva, E. R., Boechat, J. U. D., Martins, J. C. D., Ferreira, W. P. B., Siqueira, A. P., & da Silva, N. (2005). Hemolysin production by
Staphylococcus aureus species isolated from mastitic goat milk in Brazilian dairy herds. Small Ruminant Research, 56(1-3), 271-275.
9. Divyakolu, S., Chikkala, R., Ratnakar, K. S., & Sritharan, V. (2019). Hemolysins of Staphylococcus aureus—An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Advances in Infectious Diseases, 9(2), 80-104.
10. Frank, K. L., Reichert, E. J., Piper, K. E. and Patel, R. (2007). In vitro effects of antimicrobial agents on planktonic and biofilm forms of
Staphylococcus lugdunensis clinical isolates. Antimicrobial agents chemotherapy, 51, 888-895.
11. Glenny, A. T., & Stevens, M. F. (1935). Staphylococcus Toxins and Antitoxins. Journal of Pathology and Bacteriology, 40, 201-10.
12. Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., ... & Vandenesch, F. (2002). Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infection and immunity, 70(2), 631-641.
13. Kerbauy, G., Perugini, M., Yamauchi, L. M. and Yamada-Ogatta, S. F. (2011). Vancomycindependent Enterococcus faecium vanA:
characterization of the first case isolated in a university hospital in Brazil. Brazilian Journal of Medical Biological Research, 44, 253- 257.
14. Marconi, C., Cunha, M. L. R. S., Araújo Jr, J. P., & Rugolo, L. M. S. S. (2005). Standardization of the PCR technique for the detection of delta toxin in Staphylococcus spp. Journal of Venomous Animals and Toxins including Tropical Diseases, 11, 117-128.
15. Miruka, S. A., Aboge, G. O., Macharia, R. W., Obiero, G. O., & Omwenga, I. M. (2022). Beta hemolysin gene of Staphylococcus phage
3AJ_2017 genome is a suitable molecular marker for identification and characterization of pathogenic Staphylococcus aureus. Veterinary Medicine and Science, 8(2), 845-851.
16. Miyoshi, T., Iwatsuki, T. and Naganuma, T. (2005). Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater
microorganisms that pass through 0.2- micrometer-pore-size filters. Applied environmental microbiology, 71, 1084-1088.
17. Mooney, J. P., Galloway, L. J., & Riley, E. M. (2019). Malaria, anemia, and invasive bacterial disease: A neutrophil problem?. Journal of
Leukocyte Biology, 105(4), 645-655.
18. Moraveji, Z., Tabatabaei, M., Aski, H. S., & Khoshbakht, R. (2014). Characterization of hemolysins of Staphylococcus strains isolated
from human and bovine, southern Iran. Iranian journal of veterinary research, 15(4), 326.
19. Otto, M. (2014). Phenol-soluble modulins. International Journal of Medical Microbiology, 304(2), 164-169.
20. Prevost, G., Couppie, P., Prevost, P., Gayet, S., Petiau, P., Cribier, B., et al. (1995) Epidemiological Data on Staphylococcus aureus
Strains Producing Synergohymenotropic Toxins. Journal of Medical Microbiology, 42, 237-245
21. Recsei, P., Kreiswirth, B., O'reilly, M., Schlievert, P. M., Gruss, A., & Novick, R. P. (1986). Regulation of exoprotein gene expression
in Staphylococcus aureus by agr. Molecular and General Genetics MGG, 202(1), 58-61.
22. Rees, J. C., & Barr, J. R. (2017). Detection of methicillin-resistant Staphylococcus aureus using phage amplification combined with matrixassisted laser desorption/ionization mass spectrometry. Analytical and bioanalytical chemistry, 409, 1379-1386.
23. Schmitz, F.J., Veldkamp, K.E., Van Kessel, K.P., Verhoef, J. and Van Strijp, J.A. (1997) δ-Toxin from Staphylococcus aureus as a Costimulator of Human Neutrophil Oxidative Burst.
24. Shankar, N., Baghdayan, A. S., & Gilmore, M. S. (2002). Modulation of virulence within a pathogenicity island in vancomycin-resistant
Enterococcus faecalis. Nature, 417(6890), 746-750
25. Spaan, A. N., van Strijp, J. A., & Torres, V. J. (2017). Leukocidins: staphylococcal bicomponent pore-forming toxins find their receptors. Nature Reviews Microbiology, 15(7), 435-447.
26. Tarenzi, T., Lattanzi, G., & Potestio, R. (2022). Membrane binding of pore-forming γ-hemolysin components studied at different lipid
compositions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 183970.
27. Todar, K (2005). Todar online textbook of bacteriology. Staphylococcus. Department of Bacteriology, University of Wincosin-Madison.
28. Turanov, A. A., Lobanov, A. V., Fomenko, D. E., Morrison, H. G., Sogin, M. L., Klobutcher, L. A., ... & Gladyshev, V. N. (2009). Genetic code supports targeted insertion of two amino acids by one codon. Science, 323(5911), 259-261.
29. Vankerckhoven, V., Van Autgaerden, T., Vael, C., Lammens, C., Chapelle, S., Rossi, R., ... & Goossens, H. (2004). Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. Journal of clinical microbiology, 42(10), 4473-4479.
30. Xiao, M., Zhao, R., Zhang, Q., Fan, X., O’Sullivan, M. V., Li, D. F., ... & Xu, Y. C. (2016). Genotypic diversity of Staphylococcus aureus α-hemolysin gene (hla) and its association with clonal background: implications for vaccine development. PloS one, 11(2), e0149112.
31. Zhang, L., Gao, J., Barkema, H. W., Ali, T., Liu, G., Deng, Y., ... & Han, B. (2018). Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC veterinary research, 14(1), 1-12.
32. Zhou, X., Zheng, Y., Lv, Q., Kong, D., Ji, B., Han, X., ... & Jiang, Y. (2021). Staphylococcus aureus N-terminus formylated δ-toxin tends to
form amyloid fibrils, while the deformylated δ- toxin tends to form functional oligomer complexes. Virulence, 12(1), 1418-1437.
33. Zughaier, S. M., & Cornelis, P. (2018). Role of Iron in bacterial pathogenesis. Frontiers in cellular and infection microbiology,8, 344.