A STUDY TO DETECT THE POSITIVITY RATE OF PEDIATRIC PULMONARY TUBERCULOSIS AND MULTI DRUG RESISTANCE TUBERCULOSIS USING MOLECULAR METHODS

Main Article Content

Dr Rejinold T I
Dr Pramod Sambrani
Dr Rakhi Dixit
Dr Anubhav sinha

Keywords

Pediatric Tuberculosis, CBNAAT, Line Probe Assay, Multidrug Resistance, Molecular Diagnosis, Drug-Resistant TB

Abstract

Background: Pediatric tuberculosis (TB) remains a significant public health concern, particularly in high-burden countries like India. Diagnosis is often challenging due to the paucibacillary nature of disease in children and difficulty in obtaining quality sputum samples. Conventional methods lack sensitivity and delay treatment. The advent of molecular diagnostics such as Cartridge-Based Nucleic Acid Amplification Test (CBNAAT) and Line Probe Assay (LPA) offers rapid and accurate detection, including drug resistance.


Objectives: To determine the positivity rate of pulmonary tuberculosis among children under 14 years using CBNAAT.


To detect drug-resistant TB in pediatric patients using CBNAAT.


To assess multidrug resistance (MDR-TB) patterns through first-line and second-line LPA.


Methods: A prospective cross-sectional study was conducted over one year at the Department of Microbiology, KIMS, Hubballi. A total of 865 sputum samples, bronchoalveolar lavage and methods from presumptive pediatric TB cases were analyzed using AFB Sputum microscopy and CBNAAT. Rifampicin resistance detected by CBNAAT was further evaluated using Line Probe Assays for first-line (FL-LPA) and second-line (SL-LPA) anti-TB drugs.


Results: Among the 865 samples, CBNAAT detected Mycobacterium tuberculosis in 136 cases, yielding a positivity rate of 15.7%. Rifampicin resistance was identified in 6 cases (0.7%). FL-LPA confirmed multidrug resistance (RIF and INH) in 7 cases (0.8%), and SL-LPA detected fluoroquinolone resistance in 2 cases (0.2%). Logistic regression showed that children above 8 years had a three-fold higher risk of CBNAAT positivity compared to those ≤8 years.


Conclusion: CBNAAT demonstrated high diagnostic utility for pediatric pulmonary TB with a positivity rate of 15.7%. Molecular methods enabled early detection of drug resistance, vital for guiding appropriate treatment. Incorporating CBNAAT and LPA into routine diagnostic algorithms can enhance TB control among pediatric populations in high-burden settings.

Abstract 14 | Pdf Downloads 3

References

1. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. New England Journal of Medicine [Internet]. 2010 Sep 9 [cited 2025 Jun 20];363(11):1005–15. Available from: https://www.nejm.org/doi/pdf/10.1056/NEJMoa0907847
2. Uppal R, Bharti P, Sharma D, Sharma S. Diagnostic Role of Cartridge-Based Nucleic Acid Amplification Test (CB-NAAT) in Both Pulmonary and Extra-Pulmonary Pediatric Tuberculosis: A Hospital-Based Study. JK Science: Journal of Medical Education & Research [Internet]. 2024 Jan 10 [cited 2025 Jun 20];26(1):35–9. Available from: http://journal.jkscience.org/index.php/JK-Science/article/view/242
3. WHO. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance. World Health [Internet]. 2013 [cited 2025 Jun 26];1–35. Available from: https://www.ncbi.nlm.nih.gov/books/NBK258608/
4. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010 Jan;48(1):229–37.
5. 6. Sharma S, Achra A, Jeram H, Kansra S, Duggal N. Diagnosis of pulmonary tuberculosis from gastric aspirate samples in non-expectorating pediatric patients in a tertiary care hospital. Indian J Pathol Microbiol. 2020;63(2):210. - Google Search [Internet]. [cited 2025 Jun 26]. Available from: https://www.google.com/search?q=6.+Sharma+S%2C+Achra+A%2C+Jeram+H%2C+Kansra+S%2C+Duggal+N.+Diagnosis+of+pulmonary+tuberculosis+from+gastric+aspirate+samples+in+non-expectorating+pediatric+patients+in+a+tertiary+care+hospital.+Indian+J+Pathol+Microbiol.+2020%3B63(2)%3A210.&oq=6.%09Sharma+S%2C+Achra+A%2C+Jeram+H%2C+Kansra+S%2C+Duggal+N.+Diagnosis+of+pulmonary+tuberculosis+from+gastric+aspirate+samples+in+non-expectorating+pediatric+patients+in+a+tertiary+care+hospital.+Indian+J+Pathol+Microbiol.+2020%3B63(2)%3A210.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCDU1NzRqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8
6. Raizada N, Sachdeva KS, Nair SA, Kulsange S, Gupta RS, Thakur R, et al. Enhancing TB case detection: Experience in offering upfront Xpert MTB/RIF testing to pediatric presumptive TB and DR TB cases for early rapid diagnosis of drug sensitive and drug resistant TB. PLoS One [Internet]. 2014 Aug 20 [cited 2025 Jun 26];9(8). Available from: https://pubmed.ncbi.nlm.nih.gov/25140877/
7. Bowles EC, Freyée B, Van Ingen J, Mulder B, Boeree MJ, Van Soolingen D. Xpert MTB/RIF®, a novel automated polymerase chain reaction-based tool for the diagnosis of tuberculosis. International Journal of Tuberculosis and Lung Disease. 2011 Jul;15(7):988–9.
8. 8. Mishra D, Singh A, Yadav RK, Verma M. Diagnostic Utility of Cartridge- Based Nucleic Acid Amplification Test (CBNAAT) on Induced Sputum Versus Gastric Aspirate Samples for the Diagnosis of Paediatric Pulmonary Tuberculosis. 2023 Oct; 15(10): e47246. - Google Search [Internet]. [cited 2025 Jun 26]. Available from: https://www.google.com/search?q=8.%09Mishra+D%2C+Singh+A%2C+Yadav+RK%2C+Verma+M.+Diagnostic+Utility+of+Cartridge-+Based+Nucleic+Acid+Amplification+Test+%28CBNAAT%29+on+Induced+Sputum+Versus+Gastric+Aspirate+Samples+for+the+Diagnosis+of+Paediatric+Pulmonary+Tuberculosis.+2023+Oct%3B+15%2810%29%3A+e47246.&sca_esv=549b07bd2c6c9da6&sxsrf=AE3TifNNy1FFksUNmOtVhij4OpqmdpsmKQ%3A1750951230554&ei=PmVdaOfKIczhseMP_KHL8Q4&ved=0ahUKEwjn4fbQsY-OAxXMcGwGHfzQMu4Q4dUDCBA&uact=5&oq=8.%09Mishra+D%2C+Singh+A%2C+Yadav+RK%2C+Verma+M.+Diagnostic+Utility+of+Cartridge-+Based+Nucleic+Acid+Amplification+Test+%28CBNAAT%29+on+Induced+Sputum+Versus+Gastric+Aspirate+Samples+for+the+Diagnosis+of+Paediatric+Pulmonary+Tuberculosis.+2023+Oct%3B+15%2810%29%3A+e47246.&gs_lp=Egxnd3Mtd2l6LXNlcnAaAhgBIvwBOC4JTWlzaHJhIEQsIFNpbmdoIEEsIFlhZGF2IFJLLCBWZXJtYSBNLiBEaWFnbm9zdGljIFV0aWxpdHkgb2YgQ2FydHJpZGdlLSBCYXNlZCBOdWNsZWljIEFjaWQgQW1wbGlmaWNhdGlvbiBUZXN0IChDQk5BQVQpIG9uIEluZHVjZWQgU3B1dHVtIFZlcnN1cyBHYXN0cmljIEFzcGlyYXRlIFNhbXBsZXMgZm9yIHRoZSBEaWFnbm9zaXMgb2YgUGFlZGlhdHJpYyBQdWxtb25hcnkgVHViZXJjdWxvc2lzLiAyMDIzIE9jdDsgMTUoMTApOiBlNDcyNDYuMhMQIximAxgnGPgFGKgDGOoCGIsDMhAQIximAxgnGKgDGOoCGIsDMgcQIxgnGOoCMgoQIxgnGOoCGIsDMgoQIxgnGOoCGIsDMgcQIxgnGOoCMgcQIxgnGOoCMgoQIxgnGOoCGIsDMgcQIxgnGOoCMgoQIxgnGOoCGIsDMhQQABiABBiRAhi0AhiKBRjqAtgBATIUEAAYgAQYkQIYtAIYigUY6gLYAQEyFBAAGIAEGJECGLQCGIoFGOoC2AEBMhoQLhiABBiRAhjRAxi0AhjHARiKBRjqAtgBATIUEAAYgAQYkQIYtAIYigUY6gLYAQEyFBAAGIAEGJECGLQCGIoFGOoC2AEBSL4TUIALWIALcAF4AJABAJgBAKABAKoBALgBA8gBAPgBAfgBApgCAaACDagCEJgDDfEFeMe5e_Bvay-6BgYIARABGAGSBwExoAcAsgcAuAcAwgcDMy0xyAcJ&sclient=gws-wiz-serp
9. Chawla K, Nagaraja SB, Siddalingaiah N, Sanju C, Kumar U, Shenoy VP, et al. Tuberculosis screening for pediatric household contacts in India: Time to adapt newer strategies under the National TB Elimination Programme! PLoS One. 2023 Oct 1;18(10 October).
10. Nathavitharana RR, Cudahy PGT, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: A systematic review and meta-analysis. European Respiratory Journal [Internet]. 2017 Jan 1 [cited 2025 Jun 26];49(1). Available from: https://pubmed.ncbi.nlm.nih.gov/28100546/
11. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide 2018.
12. Roadmap for Childhood TB: Toward zero deaths [Internet]. [cited 2025 Jun 26]. Available from: https://www.who.int/publications/i/item/9789241506137
13. Kalra A, Parija D, Raizada N, Sachdeva KS, Rao R, Swaminathan S, et al. Upfront Xpert MTB/RIF for diagnosis of pediatric TB—Does it work? Experience from India. PLoS One [Internet]. 2020 Aug 1 [cited 2025 Jun 26];15(8):e0236057. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236057
14. World Health Organization. The End TB Strategy. Geneva: WHO; 2015. - Google Search [Internet]. [cited 2025 Jun 26]. Available from: https://www.google.com/search?q=22.+World+Health+Organization.+The+End+TB+Strategy.+Geneva%3A+WHO%3B+2015.&oq=22.%09World+Health+Organization.+The+End+TB+Strategy.+Geneva%3A+WHO%3B+2015.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQIRiPAjIHCAIQIRiPAjIHCAMQIRiPAtIBCDE2NzlqMWo0qAIIsAIB8QXvFu_xOM7v3A&sourceid=chrome&ie=UTF-8