PHENOTYPIC CHARACTERISATION OF MACROLIDE-LINCOSAMIDE-STREPTOGRAMIN B (MLSB) RESISTANCE IN STAPHYLOCOCCUS AUREUS ISOLATED FROM CLINICAL SAMPLES AT A TERTIARY CARE HOSPITAL IN CENTRAL INDIA
Main Article Content
Keywords
Staphylococcus aureus, MRSA, clindamycin resistance, D-test, iMLSB, cMLSB, VITEK-2.
Abstract
Background: Staphylococcus aureus remains a major cause of both hospital-acquired and community-acquired infections. Resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics compromises clindamycin therapy, an important alternative for treating methicillin-resistant S. aureus (MRSA). Accurate phenotypic detection of inducible resistance prevents treatment failures and contributes to antimicrobial stewardship.
Objectives: To identify constitutive (cMLSB), inducible (iMLSB), and MS phenotypes among S. aureus isolates using the D-test and compare the results with automated VITEK-2 system outcomes.
Methods: This cross-sectional study included 250 S. aureus isolates collected from patients attending various departments of Index Medical College Hospital & Research Centre (IMCHRC), Indore, between November 2021 and May 2024. Isolates were identified using standard microbiological procedures, and antimicrobial susceptibility testing was performed according to CLSI guidelines. The D-test was conducted for all erythromycin-resistant isolates, and the results were correlated with VITEK-2 findings. Statistical analysis was performed using SPSS v25.
Results: Among the 250 isolates, 148 (59%) were MRSA and 102 (41%) were MSSA. D-test identified 26% of MRSA and 11% of MSSA as iMLSB, and 40% of MRSA and 11% of MSSA as cMLSB. The D-test showed 57.7% sensitivity and 100% specificity compared with VITEK-2. A statistically significant association (p < 0.05) was observed between MRSA and inducible resistance.
Conclusion: Routine implementation of the D-test is essential in diagnostic microbiology to identify inducible clindamycin resistance, especially in MRSA isolates. Early detection prevents therapeutic failure and helps formulate targeted antibiotic policies.
References
2. Ghosh A, Pal N, Sarkar S, et al. Inducible clindamycin resistance among Staphylococcus aureus isolates in eastern India. Indian J Pathol Microbiol. 2016;59(3):298–302. doi:10.4103/0377-4929.188121
3. Majhi S, et al. Phenotypic detection of inducible clindamycin resistance in Staphylococcus aureus isolates. J Clin Diagn Res. 2016;10(2):DC19–DC22. doi:10.7860/JCDR/2016/ 16455.7202
4. Regha IR, et al. Clindamycin resistance patterns in MRSA from southern India. Int J Res Med Sci. 2016;4(8):3374–3379. doi:10.18203/2320-6012.ijrms20162365
5. Baral R, et al. Inducible clindamycin resistance among S. aureus isolates from clinical samples. Nepal Med Coll J. 2017;19(1):28–33. doi:10.3126/nmcj. v19i1.16557
6. Adhikari R, et al. Phenotypic detection of MLSB resistance among S. aureus clinical isolates. Ann Clin Microbiol Antimicrob. 2017; 16:41. doi:10.1186/s12941-017-0213-9
7. Memariani H, et al. Global prevalence of inducible clindamycin resistance in S. aureus: a meta-analysis. J Glob Antimicrob Resist. 2021; 25:204–212. doi: 10.1016/j.jgar.2021.03.016
8. Tiwari S, Malviya V. Correlation between phenotypic and automated detection of inducible clindamycin resistance. Int J Med Microbiol Res. 2024;6(1):10–15. doi:10.3390/ijmmr6010010
9. Sharma M, et al. Molecular epidemiology of MRSA and resistance gene expression. Front Microbiol. 2022; 13:847112. doi:10.3389/fmicb.2022.847112
10. Lee AS, et al. Global dissemination of MRSA: molecular perspectives. Clin Microbiol Rev. 2018;31(1):e00020-17. doi:10.1128/CMR.00020-17
11. Kumar S, et al. Trends in MRSA prevalence and resistance mechanisms in India. J Infect Dev Ctries. 2020;14(2):142–150. doi:10.3855/jidc.11564
12. Rajkumar R, et al. Surveillance of inducible clindamycin resistance in tertiary care hospitals. Indian J Med Res. 2019;150(6):664–670. doi: 10.4103/ijmr.IJMR_1101_18
13. Goudarzi M, et al. Molecular characterisation of macrolide-lincosamide resistance in S. aureus from Iran. Infect Drug Resist. 2019;12:1209–1217. doi:10.2147/IDR.S202345
14. Cavalcanti YV, et al. Phenotypic detection and epidemiological correlation of iMLSB resistance. Braz J Infect Dis. 2017;21(3):305–311. doi:10.1016/j.bjid.2017.01.006
15. Gupta R, et al. Comparative evaluation of automated and manual systems for MLSB resistance. J Clin Diagn Res. 2023;17(5):DC10–DC16. doi:10.7860/JCDR/2023/23467.11012
16. Wang X, et al. Epidemiological trends of MRSA and MLSB resistance worldwide. Microorganisms. 2022;10(3):455. doi:10.3390/microorganisms10030455
17. Gupta P, et al. Role of D-test in routine susceptibility testing. Asian J Med Sci. 2021;12(2):48–53. doi:10.3126/ajms.v12i2.34876
18. Singh R, et al. Evaluation of automated systems for clindamycin resistance detection. Indian J Pathol Microbiol. 2020;63(4):572–578. doi:10.4103/IJPM.IJPM_741_19
19. Tiwari DK, et al. Trends in MRSA prevalence and resistance mechanisms. Int J Med Microbiol. 2021;311(3):151–159. doi:10.1016/j.ijmm.2021.151159
20. Dutta S, et al. Comparative study of phenotypic and molecular detection of MLSB resistance. J Lab Physicians. 2022;14(2):142–150. doi:10.4103/JLP.JLP_123_21