PHENOTYPIC CHARACTERISATION OF MACROLIDE-LINCOSAMIDE-STREPTOGRAMIN B (MLSB) RESISTANCE IN STAPHYLOCOCCUS AUREUS ISOLATED FROM CLINICAL SAMPLES AT A TERTIARY CARE HOSPITAL IN CENTRAL INDIA

Main Article Content

Ms Tripti Mani Tripathi
Dr Ramanath Karicheri

Keywords

Staphylococcus aureus, MRSA, clindamycin resistance, D-test, iMLSB, cMLSB, VITEK-2.

Abstract

Background: Staphylococcus aureus remains a major cause of both hospital-acquired and community-acquired infections. Resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics compromises clindamycin therapy, an important alternative for treating methicillin-resistant S. aureus (MRSA). Accurate phenotypic detection of inducible resistance prevents treatment failures and contributes to antimicrobial stewardship.


Objectives: To identify constitutive (cMLSB), inducible (iMLSB), and MS phenotypes among S. aureus isolates using the D-test and compare the results with automated VITEK-2 system outcomes.


Methods: This cross-sectional study included 250 S. aureus isolates collected from patients attending various departments of Index Medical College Hospital & Research Centre (IMCHRC), Indore, between November 2021 and May 2024. Isolates were identified using standard microbiological procedures, and antimicrobial susceptibility testing was performed according to CLSI guidelines. The D-test was conducted for all erythromycin-resistant isolates, and the results were correlated with VITEK-2 findings. Statistical analysis was performed using SPSS v25.


Results: Among the 250 isolates, 148 (59%) were MRSA and 102 (41%) were MSSA. D-test identified 26% of MRSA and 11% of MSSA as iMLSB, and 40% of MRSA and 11% of MSSA as cMLSB. The D-test showed 57.7% sensitivity and 100% specificity compared with VITEK-2. A statistically significant association (p < 0.05) was observed between MRSA and inducible resistance.


Conclusion: Routine implementation of the D-test is essential in diagnostic microbiology to identify inducible clindamycin resistance, especially in MRSA isolates. Early detection prevents therapeutic failure and helps formulate targeted antibiotic policies.

Abstract 4 | Pdf Downloads 0

References

1. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2024.
2. Ghosh A, Pal N, Sarkar S, et al. Inducible clindamycin resistance among Staphylococcus aureus isolates in eastern India. Indian J Pathol Microbiol. 2016;59(3):298–302. doi:10.4103/0377-4929.188121
3. Majhi S, et al. Phenotypic detection of inducible clindamycin resistance in Staphylococcus aureus isolates. J Clin Diagn Res. 2016;10(2):DC19–DC22. doi:10.7860/JCDR/2016/ 16455.7202
4. Regha IR, et al. Clindamycin resistance patterns in MRSA from southern India. Int J Res Med Sci. 2016;4(8):3374–3379. doi:10.18203/2320-6012.ijrms20162365
5. Baral R, et al. Inducible clindamycin resistance among S. aureus isolates from clinical samples. Nepal Med Coll J. 2017;19(1):28–33. doi:10.3126/nmcj. v19i1.16557
6. Adhikari R, et al. Phenotypic detection of MLSB resistance among S. aureus clinical isolates. Ann Clin Microbiol Antimicrob. 2017; 16:41. doi:10.1186/s12941-017-0213-9
7. Memariani H, et al. Global prevalence of inducible clindamycin resistance in S. aureus: a meta-analysis. J Glob Antimicrob Resist. 2021; 25:204–212. doi: 10.1016/j.jgar.2021.03.016
8. Tiwari S, Malviya V. Correlation between phenotypic and automated detection of inducible clindamycin resistance. Int J Med Microbiol Res. 2024;6(1):10–15. doi:10.3390/ijmmr6010010
9. Sharma M, et al. Molecular epidemiology of MRSA and resistance gene expression. Front Microbiol. 2022; 13:847112. doi:10.3389/fmicb.2022.847112
10. Lee AS, et al. Global dissemination of MRSA: molecular perspectives. Clin Microbiol Rev. 2018;31(1):e00020-17. doi:10.1128/CMR.00020-17
11. Kumar S, et al. Trends in MRSA prevalence and resistance mechanisms in India. J Infect Dev Ctries. 2020;14(2):142–150. doi:10.3855/jidc.11564
12. Rajkumar R, et al. Surveillance of inducible clindamycin resistance in tertiary care hospitals. Indian J Med Res. 2019;150(6):664–670. doi: 10.4103/ijmr.IJMR_1101_18
13. Goudarzi M, et al. Molecular characterisation of macrolide-lincosamide resistance in S. aureus from Iran. Infect Drug Resist. 2019;12:1209–1217. doi:10.2147/IDR.S202345
14. Cavalcanti YV, et al. Phenotypic detection and epidemiological correlation of iMLSB resistance. Braz J Infect Dis. 2017;21(3):305–311. doi:10.1016/j.bjid.2017.01.006
15. Gupta R, et al. Comparative evaluation of automated and manual systems for MLSB resistance. J Clin Diagn Res. 2023;17(5):DC10–DC16. doi:10.7860/JCDR/2023/23467.11012
16. Wang X, et al. Epidemiological trends of MRSA and MLSB resistance worldwide. Microorganisms. 2022;10(3):455. doi:10.3390/microorganisms10030455
17. Gupta P, et al. Role of D-test in routine susceptibility testing. Asian J Med Sci. 2021;12(2):48–53. doi:10.3126/ajms.v12i2.34876
18. Singh R, et al. Evaluation of automated systems for clindamycin resistance detection. Indian J Pathol Microbiol. 2020;63(4):572–578. doi:10.4103/IJPM.IJPM_741_19
19. Tiwari DK, et al. Trends in MRSA prevalence and resistance mechanisms. Int J Med Microbiol. 2021;311(3):151–159. doi:10.1016/j.ijmm.2021.151159
20. Dutta S, et al. Comparative study of phenotypic and molecular detection of MLSB resistance. J Lab Physicians. 2022;14(2):142–150. doi:10.4103/JLP.JLP_123_21